ŠçŒ¤‹†‹ÆÑ

 

 

uŒ´’˜˜_•¶v

 

i2024”Nj

 

23-1) Sazki-Hagenbach, P., Kleeblatt, E., Fukuda, M., Ali, H. and Sagi-Eisenberg, R. (2024) The underlying Rab network of MRGPRX2-stimulated secretion unveils the impact of receptor trafficking on secretory granule biogenesis and secretion. Cells 13, 93 [PubMed]

 

24-2) Nakamura, H. and Fukuda, M. (2024) Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Sci. Rep. 14, 2529 [PubMed]iƒƒ‰ƒjƒ“‡¬Eƒ`ƒƒVƒi[ƒ[‚̓ƒ‰ƒmƒ\[ƒ€‚Ƃ͕ʌ‚ɇ¬‚³‚êAŒã‚©‚ç–¢¬nƒƒ‰ƒmƒ\[ƒ€‚Ö‚Æ—A‘—‚³‚ê‚Ü‚·Bƒ`ƒƒVƒi[ƒ[‚Í’èíó‘ԂŃSƒ‹ƒW‘Ì‚âƒGƒ“ƒhƒ\[ƒ€‚È‚Ç•¡”‚̃Iƒ‹ƒKƒlƒ‰‚É‹ÇÝ‚·‚邽‚ßAƒ`ƒƒVƒi[ƒ[—A‘—‚̉ðÍ‚ÌáŠQ‚Æ‚È‚Á‚Ä‚¢‚Ü‚µ‚½B¡‰ñŽ„’B‚ÍAFM4‚Æ‚¢‚¤Ž©ŒÈƒIƒŠƒSƒ}[‰»ƒhƒƒCƒ“‚ð—p‚¢‚ÄAƒ`ƒƒVƒi[ƒ[‚Ì“¯’²—A‘—Œn‚ðŠm—§‚µ‚Ü‚µ‚½B‚±‚̃VƒXƒeƒ€‚ð—p‚¢‚ÄATyrp1‚ªŒø—¦“I‚ȃ`ƒƒVƒi[ƒ[‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

i2023”Nj

 

23-1) Shikanai, M., Ito, S., Nishimura, Y., Akagawa, R., Fukuda, M., Yuzaki, M., Nabeshima, Y. and Kawauchi, T. (2023) Rab21 regulates caveolin-1-mediated endocytic trafficking to promote immature neurite pruning. EMBO Rep. 24, e51475 [PubMed]

 

23-2) Nakashima, S., Matsui, T. and Fukuda, M. (2023) Vps9d1 regulates tubular endosome formation through specific activation of Rab22A. J. Cell Sci. 136, jcs260522 [PubMed]iŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÍAƒNƒ‰ƒXƒŠƒ“”ñˆË‘¶«ƒGƒ“ƒhƒTƒCƒg[ƒVƒXiCIEj‚É‚æ‚Á‚ÄŽæ‚螂܂ꂽ•¨Ž¿‚̃ŠƒTƒCƒNƒ‹‚ÉŠÖ—^‚µ‚Ä‚¨‚èA‚»‚ÌŠÇó\‘¢‚ÌŒ`¬‚É‚ÍRab22A‚ªd—v‚Å‚ ‚邱‚Æ‚ðŽ„’B‚͈ȑO‚ÉŒ©o‚µ‚Ä‚¢‚Ü‚·B‚µ‚©‚µARab22A‚ª‚ǂ̂悤‚È‹@\‚ÅŠˆ«‰»‚³‚êACIEƒJ[ƒS‚̃ŠƒTƒCƒNƒ‹‚ð§Œä‚·‚é‚Ì‚©‚Í‚±‚ê‚Ü‚Å‘S‚­•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAƒQƒmƒ€ã‚É‘¶Ý‚·‚éRabŠˆ«‰»ˆöŽqiGEFj‚ÌŒó•â‚ð–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚·‚邱‚Æ‚É‚æ‚èA‹@”\–¢’m‚ÌVps9d1‚Æ‚¢‚¤•ªŽq‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½B‚Ü‚½AVps9d1‚Íin vitro‚ÅRab22A‚ðŠˆ«‰»‚µA‚»‚ÌŒ‡‘¹‚É‚æ‚èŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚ª’˜‚µ‚­‘¹‚È‚í‚ê‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj

 

23-3) Ishiyama, S., Hasegawa, T., Sugeno, N., Kobayashi, J., Yoshida, S., Miki, Y., Wakabayashi, K., Fukuda, M., Kawata, Y., Nakamura, T., Sato, K., Ezura, M., Kikuchi, A., Takeda, A. and Aoki, M. (2023) Sortilin acts as an endocytic receptor for ƒ¿-synuclein fibril. FASEB J. 37, e23017 [PubMed]

 

23-4) Komori, T., Kuwahara, T., Fujimoto, T., Sakurai, M., Koyama-Honda, I., Fukuda, M. and Iwatsubo, T. (2023) Phosphorylation of Rab29 at Ser185 regulates its localization and role in the lysosomal stress response in concert with LRRK2. J. Cell Sci. 136, jcs.261003 [PubMed]

 

23-5) Brauer, N., Maruta, Y., Strege, K., Oschlies, I., Nakamura, H., Lisci, M., Böhm, S., Lehmberg, K., Brandhoff, L., Hennies, H. C., Ehl, S. R. Parvaneh, N., Kappler, W., Fukuda, M., Griffiths, G. M., Niehues, T. and Ammann, S. K. (2023) Immunodeficiency with susceptibility to lymphoma with complex genotype affecting energy metabolism (FBP1, ACAD9) and vesicle trafficking (RAB27A). Front. Immunol. 14, 1151166 [PubMed]iRab27A‚ɕψقðŽ‚–Ɖu•s‘SÇ‚Ì‹@”\‰ðÍ‚ðƒhƒCƒcAƒCƒMƒŠƒXAƒCƒ‰ƒ“A“ú–{‚Ì‚SƒJ‘‚Ì‘Û‹¤“¯Œ¤‹†‚Ås‚¢‚Ü‚µ‚½Ij

 

23-6) Noda, K., Lu, S.-L., Chen, S., Tokuda, K., Li, Y., Hao, F., Wada, Y., Sun-Wada, G.-H., Murakami, S., Fukuda, M., Itoh, T. and Noda, T. (2023) Characterization of Rab32- and Rab38-positive lysosome-related organelles in osteoclasts and macrophages. J. Biol. Chem. 299, 105191 [PubMed]

 

23-7) Matsui, T., Sakamaki, Y., Hiragi, S. and Fukuda, M. (2023) VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct. Funct. 48, 187198 [PubMed]i‹É«‰»‚µ‚½ã”ç×–E‚Ì’¸’[–Œ‘¤‚Æ‘¤’ê–Œ‘¤‚©‚ç‚ÍAŒ`¬E—A‘—‹@\‚̈قȂé“ñŽí—ނ̃GƒNƒ\ƒ\[ƒ€‚ª•ª”傳‚ê‚Ä‚¢‚Ü‚·iEMBO Rep., 2021; Cell Rep., 2022jB¡‰ñŽ„’B‚ÍAƒGƒNƒ\ƒ\[ƒ€‚ÌŒ³‚Æ‚È‚é“ào¬–E‚ðŠÜ‚Þ‘½–E‘Ì‚Æ×–E–Œ‚Ì—Z‡‹@\‚ÉÅ“_‚ð“–‚ÄA’¸’[–Œ‘¤‚Æ‘¤’ê–Œ‘¤‚ł͈قȂé‘g‚݇‚킹‚ÌSNARE•¡‡‘Ì‚ª‹@”\‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B‚·‚È‚í‚¿A’¸’[–Œ‘¤‚Å‚ÍVAMP5-SNAP47-STX1‚Ì‚Ý‚ª‹@”\‚µA‘¤’ê–Œ‘¤‚Å‚ÍVAMP5-SNAP47-STX1‚ɉÁ‚¦‚ÄVAMP5-SNAP47-STX4‚ª“ÁˆÙ“I‚É‹@”\‚·‚邱‚Æ‚ð‰‚ß‚Ä–¾‚ç‚©‚É‚µ‚Ü‚µ‚½Bj

 

23-8) Tokuda, K., Lu, S.-L., Zhang, Z., Kato, Y., Chen, S., Noda, K., Hirose, K., Usami, Y., Uzawa, N., Murakami, S., Toyosawa, S., Fukuda, M., Sun-Wada, G.-H., Wada, Y. and Noda T. (2023) Rab32 and Rab38 maintain bone homeostasis by regulating intracellular traffic in osteoclasts. Cell Struct. Funct., 48, 223239 [PubMed]

 

23-9) Rios, J. J., Li, Y., Paria, N., Bohlender, R. J., Huff, C., Rosenfeld, J. A., Liu, P., Bi, W., Haga, K., Fukuda, M., Vashisth, S., Kaur, K., Chahrour, M., Bober, M. B., Duker, A. L., Ladha, F. A., Hanchard, N. A., Atala, K., Khanshour, A. M., Smith, L., Wise, C. A. and Delgado, M. R. (2023) RAB1A haploinsufficiency phenocopies the 2p14-p15 microdeletion and is associated with impaired neuronal differentiation. Am. J. Hum. Genet. 110, 2103-2111 [PubMed]

 

i2022”Nj

 

22-1) Oguchi, M. E., Homma, Y. and Fukuda, M. (2022) The N-terminal Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells. Small GTPases 13, 77-83 [PubMed]iŽ„’B‚͈ȑOAˆêŽŸ‘@–ÑiƒVƒŠƒAjŒ`¬‚Éd—v‚ȈöŽq‚̈ê‚‚Ƃµ‚ÄRab34‚𓯒肵A‚»‚̃†ƒj[ƒN‚ȃAƒ~ƒm––’[—̈悪ƒVƒŠƒAŒ`¬‚ÉŠÖ—^‚·‚邱‚Æ‚ð•ñ‚µ‚Ä‚¢‚Ü‚·iJ. Biol. Chem., 2020jB¡‰ñŽ„’B‚ÍARab34‚̃Aƒ~ƒm––’[—̈æ‚ÌÚׂȋ@”\‰ðÍ‚ðs‚¢Ai‰»“I‚É•Û‘¶‚³‚ꂽ16-18”Ô–Ú‚ÌŽO‚‚̃Aƒ~ƒmŽ_iLeu-Pro-Glnj‚ªƒVƒŠƒAŒ`¬‚Éd—v‚Å‚ ‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

22-2) Matsui, T., Sakamaki, Y., Nakashima, S. and Fukuda, M. (2022) Rab39 and its effector UACA regulate basolateral exosome release from polarized epithelial cells. Cell Rep. 39, 110875 [PubMed]i‹É«‰»‚µ‚½ã”ç×–E‚Ì’¸’[–Œ‘¤‚Æ‘¤’ê–Œ‘¤‚©‚ç‚Í’`”’Ž¿‘g¬‚̈قȂé“ñŽí—ނ̃GƒNƒ\ƒ\[ƒ€‚ª•ª”傳‚ê‚Ä‚¨‚èA‚»‚ÌŒ`¬‹@\‚ª‘S‚­ˆÙ‚Ȃ邱‚Æ‚ðˆÈ‘O‚É•ñ‚µ‚Ä‚¢‚Ü‚·iEMBO Rep., 2021jB¡‰ñŽ„’B‚ÍAƒGƒNƒ\ƒ\[ƒ€‚ÌŒ³‚Æ‚È‚é“ào¬–E‚ðŠÜ‚Þ‘½–E‘Ì‚Ì×–E–Œ‚Ö‚Ì—A‘—‚É‚àˆÙ‚È‚éƒZƒbƒg‚ÌRab•ªŽq‚ªŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B‚·‚È‚í‚¿A’¸’[–ŒƒGƒNƒ\ƒ\[ƒ€‚Ì•ª”å‚ÍRab27‚ÆRab37‚É‚æ‚Á‚ÄA‘¤’ê–ŒƒGƒNƒ\ƒ\[ƒ€‚Ì•ª”å‚ÍRab39UACA-BORC‚É‚æ‚Á‚ħŒä‚³‚ê‚邱‚Æ‚ð‰‚ß‚Ä–¾‚ç‚©‚É‚µ‚Ü‚µ‚½B‚Ü‚½Aƒp[ƒLƒ“ƒ\ƒ“•a‚ÌŒ´ˆö‚Æ‚È‚éRab39B‚̃~ƒXƒZƒ“ƒX•ÏˆÙ‚Å‚àƒGƒNƒ\ƒ\[ƒ€‚Ì•ª”å”\‚̒ቺ‚ªŠÏŽ@‚³‚êAŽ¾Š³”­Ç‚Æ‚ÌŠÖ˜A«‚àŽ¦´‚³‚ê‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

22-3) Naß, J., Koerdt, S. N., Biesemann, A., Chehab, T., Yasuda, T., Fukuda, M., Martín-Belmonte, F. and Gerke, V. (2022) Tip-end fusion of a rod-shaped secretory organelle. Cell. Mol. Life Sci. 79, 344 [PubMed]

 

22-4) Hiragi, S., Matsui, T., Sakamaki, Y. and Fukuda, M. (2022) TBC1D18 is a Rab5-GAP that coordinates endosome maturation together with Mon1. J. Cell Biol. 221, e202201114 [PubMed]iƒGƒ“ƒhƒTƒCƒg[ƒVƒX‚É‚æ‚Á‚Ä×–E“à‚ÉŽæ‚螂܂ꂽ•¨Ž¿‚ÍA‰ŠúƒGƒ“ƒhƒ\[ƒ€AŒãŠúƒGƒ“ƒhƒ\[ƒ€‚ðŒo‚ÄÅI“I‚ɃŠƒ\ƒ\[ƒ€‚Å•ª‰ð‚ðŽó‚¯‚éB‚±‚̃Gƒ“ƒhƒ\[ƒ€¬n‰ß’ö‚É‚ÍARab5‚©‚çRab7‚Ö‚Ì‘JˆÚ‚ª•s‰ÂŒ‡‚Æl‚¦‚ç‚ê‚Ä‚¢‚邪ARab5‚ª‚¢‚‚ǂ±‚ÅA‚ǂ̂悤‚È‹@\‚Å•sŠˆ«‰»‚³‚ê‚é‚©‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚È‚©‚Á‚½B¡‰ñAƒGƒ“ƒhƒ\[ƒ€¬n‚ð§Œä‚·‚éV‹KRab5‚Ì•sŠˆ«‰»ˆöŽq‚Æ‚µ‚ÄTBC1D18‚𓯒肷‚邱‚ƂɬŒ÷‚µARab5•sŠˆ«‰»‚Ìd—v«‚ðŠÜ‚ß‚½ƒGƒ“ƒhƒ\[ƒ€¬n‚ÉŠÖ‚·‚éV‚½‚ȃ‚ƒfƒ‹‚ð’ñ¥‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

22-5) Maruta, Y. and Fukuda, M. (2022) Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes. J. Biol. Chem. 298, 102508 [PubMed]iƒƒ‰ƒmƒTƒCƒg‚É‚¨‚¯‚郃‰ƒmƒ\[ƒ€‚Ì•ª•z‚Í×–EœŠiã‚̇s«—A‘—‚Æ‹ts«—A‘—‚̃oƒ‰ƒ“ƒX‚É‚æ‚Á‚ħŒä‚³‚ê‚Ä‚¢‚Ü‚·BŽ„’B‚Í‚±‚ê‚Ü‚Å‹ts«—A‘—ƒ‚[ƒ^[iƒ_ƒCƒjƒ“j‚̃ƒ‰ƒmƒ\[ƒ€ã‚̃ŒƒZƒvƒ^[‚Æ‚µ‚ÄAƒƒ‰ƒmƒŒƒMƒ…ƒŠƒ“‚ÆRab36‚𓯒肵‚Ä‚¢‚Ü‚·‚ªA—¼ŽÒ‚ðŒ‡‘¹‚³‚¹‚Ä‚à‹ts«—A‘—‚ÍŠ®‘S‚É‚ÍŽ~‚Ü‚ç‚È‚¢‚±‚Æ‚©‚çA‘æŽO‚̈öŽq‚Ì‘¶Ý‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚µ‚½B¡‰ñAƒƒ‰ƒmƒ\[ƒ€‚Ì‹ts«—A‘—‚ð§Œä‚·‚éÅŒã‚̈öŽq‚Æ‚µ‚Älarge Rab‚̈êŽíARab44‚𓯒肷‚邱‚ƂɬŒ÷‚µAƒJƒ‹ƒVƒEƒ€ƒCƒIƒ“‚É‚æ‚駌ä‚â‚»‚Ì—A‘—‹@\‚ð‰ð–¾‚µ‚Ü‚µ‚½Bj

 

22-6) Nishizawa, A., Maruta, Y. and Fukuda, M. (2022) Rab32/38-dependent and -independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells. Int. J. Mol. Sci. 23, 14144 [PubMed]i”|—{ƒƒ‰ƒmƒTƒCƒg‚ÍAƒƒ‰ƒjƒ“ŽY«”\‚ð•ÛŽ‚µ‚½‚Ü‚Ü’·Šú”|—{‚ª¢“ï‚È‚½‚ßAŒ»ÝŽå—¬‚Æ‚È‚Á‚Ä‚¢‚éCRISPR/Cas9‚É‚æ‚éƒmƒbƒNƒAƒEƒgiKOj‰ðÍ‚É‚Í•sŒü‚«‚Å‚·Bˆê•ûAƒƒ‰ƒm[ƒ}‚Í–³ŒÀ‘B‚ª‰Â”\‚È‚½‚ßAKOŠ”‚ÌŽ÷—§‚͉”\‚Å‚·‚ªAƒƒ‰ƒmƒTƒCƒg‚ƃƒ‰ƒm[ƒ}‚Ńƒ‰ƒmƒ\[ƒ€‚ÌŒ`¬E—A‘—‚ª“¯‚¶ƒƒJƒjƒYƒ€‚Ås‚í‚ê‚Ä‚¢‚é‚©‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñAB16-F1ƒƒ‰ƒm[ƒ}×–E‚ð—p‚¢‚½KO‰ðÍ‚ðs‚¢Aƒƒ‰ƒjƒ“‡¬‚⃃‰ƒmƒ\[ƒ€‚Ì—A‘—‚ÌŽd‘g‚Ý‚ÍB16-F1×–E‚Å‚à•Û‚½‚ê‚Ä‚¢‚Ü‚µ‚½‚ªAƒƒ‰ƒjƒ“‡¬y‘f‚̃ƒ‰ƒmƒ\[ƒ€‚Ö‚Ì—A‘—‚ÌŽd‘g‚݂̓ƒ‰ƒmƒTƒCƒg‚Ƃ͈قȂ邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½Bƒƒ‰ƒmƒTƒCƒg‚Å‚ÍABLOC-3ERab32/38EVarp‚ÌŒo˜H‚ªƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚Éd—v‚Å‚·‚ªAB16-F1×–E‚É‚Í‚±‚ÌŒo˜H‚Æ‚Í”ñˆË‘¶“I‚È‚à‚Ì‚ª‘¶Ý‚·‚邱‚Æ‚ð‰‚ß‚Ä“Ë‚«Ž~‚ß‚Ü‚µ‚½Bƒƒ‰ƒm[ƒ}×–E‚Í‚»‚ÌŽæ‚舵‚¢‚â‚·‚³‚©‚çA”ü”’Œ¤‹†‚È‚Ç‚Å—Ç‚­—p‚¢‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA¡‰ñ‚̬‰Ê‚É‚æ‚èAƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ð‘ÎÛ‚Æ‚µ‚½‰ðÍ‚ðs‚¤Û‚É‚ÍA’ˆÓ‚ð—v‚·‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½Bj

 

i2021”Nj

 

21-1) Urrutia, P. J., Bodaleo, F., Bórquez, D. A., Homma, Y., Rozes-Salvador, V., Villablanca, C., Conde, C., Fukuda, M. and González-Billault, C. (2021) Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a. J. Neurosci. 41, 1636-1649 [PubMed]

 

21-2) Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. and Fukuda, M. (2021) ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 [PubMed]iƒGƒNƒ\ƒ\[ƒ€‚Í—±Œa100 nm‘OŒã‚Ì×–EŠO¬–E‚̈êŽí‚ÅA‹ß”NV‚½‚È×–EŠÔƒRƒ~ƒ…ƒjƒP[ƒVƒ‡ƒ“‚ÌŽè’i‚Æ‚µ‚Ä’–Ú‚³‚ê‚Ä‚¢‚Ü‚·BÅ‹ßAƒTƒCƒY‚â‘g¬‚̈قȂéƒGƒNƒ\ƒ\[ƒ€‚Ì‘¶Ý‚ª•ñ‚³‚ê‚é‚悤‚É‚È‚Á‚Ä‚«‚Ü‚µ‚½‚ªA‚»‚ÌwˆÙŽ¿«i‘½—l«jx‚ð¶‚Ýo‚·Žd‘g‚Ý‚Í–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B–{Œ¤‹†‚Å‚ÍA“ñŽí—ނ̈قȂé×–E–Œi’¸’[–Œ‚Æ‘¤’ê–Œj‚ðŽ‚ÂMDCK×–E‚ð—p‚¢‚ÄAˆÙ‚È‚é×–E–Œ‚©‚ç•úo‚³‚ê‚é‘g¬‚̈قȂéƒGƒNƒ\ƒ\[ƒ€‚ÌŒ`¬‹@\‚̈Ⴂ‚ð‰ð–¾‚µ‚Ü‚µ‚½B‚·‚È‚í‚¿A’¸’[–Œ‘¤‚̃GƒNƒ\ƒ\[ƒ€‚ÌŒ`¬‚É‚ÍALIX-Syntenin1Syndecan1•¡‡‘Ì‚ªA‘¤’ê–Œ‘¤‚̃GƒNƒ\ƒ\[ƒ€‚ÌŒ`¬‚ɂ̓XƒtƒBƒ“ƒSƒ~ƒGƒŠƒi[ƒ[inSMase2jˆË‘¶“I‚ȃZƒ‰ƒ~ƒh‘ãŽÓ‚ª“Æ—§‚É‹@”\‚·‚邱‚Æ‚ð‰‚ß‚Ä“Ë‚«Ž~‚ß‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

21-3) Osaki, F., Matsui, T., Hiragi, S., Homma, Y. and Fukuda, M. (2021) RBD11, a bioengineered Rab11-binding module for visualizing and analyzing endogenous Rab11. J. Cell Sci. 134, jcs257311 [PubMed]iRab‚Ì‹@”\‰ðÍ‚ðs‚¤Žè–@‚̈ê‚‚Ƃµ‚ÄARabƒGƒtƒFƒNƒ^[ƒhƒƒCƒ“‚̉ßè”­Œ»‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA‘½‚­‚̃GƒtƒFƒNƒ^[ƒhƒƒCƒ“‚Í•¡”‚ÌRab‚ÆŒ‹‡‚µ‚Ä‚µ‚Ü‚¤‚½‚ßA“ÁˆÙ«‚ª’á‚¢‚Æ‚¢‚¤–â‘è“_‚ª‚ ‚è‚Ü‚µ‚½B¡‰ñŽ„’B‚ÍAƒoƒCƒIƒGƒ“ƒWƒjƒAƒŠƒ“ƒO‚ð—p‚¢‚ÄŠˆ«Œ^‚ÌRab11‚Ì‚Ý‚ÉŒ‹‡‚·‚éV‹Kƒc[ƒ‹‚Æ‚µ‚ÄAwRBD11x‚ðŠJ”­‚·‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BRBD11i‚ ‚é‚¢‚ÍRBD11‚ðƒ^ƒ“ƒfƒ€‚ɂ‚Ȃ¢‚¾2~RBD11j‚ð×–E‚É”­Œ»‚·‚邱‚Æ‚É‚æ‚èA×–E‚ª¶‚«‚½‚Ü‚Ü‚Ìó‘Ô‚Å“àÝ«‚ÌRab11‚Ì‹ÇÝ‚ð‰ÂŽ‹‰»‚µ‚½‚èARab11‚Ì‹@”\‚ð‘jŠQ‚·‚邱‚Æ‚ª‰Â”\‚É‚È‚è‚Ü‚µ‚½Bj

 

21-4) Homma, Y. and Fukuda, M. (2021) Knockout analysis of Rab6 effector proteins revealed the role of VPS52 in the secretory pathway. Biochem. Biphys. Res. Common. 561, 151-157 [PubMed]iRab6-KO×–E‚ł͉—n«’`”’Ž¿‚Ì•ª”å‘jŠQiƒŠƒ\ƒ\[ƒ€‚Å‚Ì’~Ïj‚âŠî’ê–Œ‚ÌŒ`¬•s‘S‚ÌÇ󂪊ώ@‚³‚ê‚Ü‚·‚ªARab6‚ª‚ǂ̂悤‚È‹@\‚Å•ª”åŒo˜H‚ð§Œä‚µ‚Ä‚¢‚é‚Ì‚©‚Í–¢‚¾–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍA6Ží—Þ‚ÌRab6ƒGƒNƒtƒFƒNƒ^[Œó•â•ªŽq‚ÌKO×–EŠ”‚ðŽ÷—§‚µA‚»‚Ì•\Œ»Œ^‚̉ðÍ‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊAVPS52-KO×–E‚Ì‚Ý‚ª‰Â—n«’`”’Ž¿‚Ì•ª”å‘jŠQ‚ÌÇó‚ðŽ¦‚µ‚Ü‚µ‚½‚ªA‘S‚Ä‚ÌKO×–E‚ÅŠî’ê–Œ‚ª³í‚ÉŒ`¬‚³‚ê‚Ä‚¢‚Ü‚µ‚½B‚±‚Ì‚±‚Æ‚©‚çARab6‚Í•ª”åŒo˜H‚ÆŠî’ê–ŒŒ`¬‚É‚¨‚¢‚ĈقȂéƒGƒtƒFƒNƒ^[•ªŽq‚ðŽg‚¢•ª‚¯‚Ä‚¨‚èAŠî’ê–ŒŒ`¬‚ÉŠÖ‚µ‚Ä‚Í–¢’m‚̃GƒtƒFƒNƒ^[•ªŽq‚ÌŠÖ—^‚ªŽ¦´‚³‚ê‚Ü‚·Bj

 

21-5) Omar, J., Rosenbaum, E., Efergan, A., Abu Sneineh, B., Yeheskel, A., Maruta, Y. Fukuda, M. and Sagi-Eisenberg, R. (2021) Biochemical and structural insights into Rab12 interactions with RILP and its family members. Sci. Rep. 11, 10317 [PubMed]

 

21-6) Ganga, A. K., Kennedy, M. C., Oguchi, M. E., Gray, S. D., Oliver, K. E., Knight, T. A., De La Cruz, E. M., Homma, Y., Fukuda, M. and Breslow, D. K. (2021) Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Curr. Biol. 31, 2895-2905 [PubMed]

 

21-7) Komaki, K., Takano, T., Sato, Y., Asada, A., Ikeda, S., Yamada, K., Wei, R., Huo, A., Fukuchi, A., Saito, T., Ando, K., Murayama, S., Araki, W., Kametani, F., Hasegawa, M., Iwatsubo, T., Tomomura, M., Fukuda, M., Hisanaga, S.-I. (2021) Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of ƒÀ-secretase BACE1. J. Biochem. 170, 729738 [PubMed]

 

21-8) Trofimenko, E., Homma, Y., Fukuda, M. and Widmann, C. (2021) The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Rep. 37, 109945 [PubMed]

 

21-9) Hatoyama, Y., Homma, Y., Hiragi, S. and Fukuda, M. (2021) Establishment and analysis of conditional Rab1- and Rab5-knockout cells using the auxin-inducible degron system. J. Cell Sci. 134, jcs259184 [PubMed]išM“û“®•¨‚É‹¤’Ê‚µ‚Ä‘¶Ý‚·‚é58Ží—Þ‚ÌRab‚Ì‚¤‚¿ARab1‚ÆRab5‚Ͷ‘¶‚â‘B‚É•K{‚Ì‚½‚ßA‚±‚ê‚܂ŃmƒbƒNƒAƒEƒgiKOj×–EŠ”‚ðŽ÷—§‚·‚邱‚Æ‚ª‚Å‚«‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñAƒI[ƒLƒVƒ“ƒfƒOƒƒ“–@‚ð—p‚¢‚ÄRab1‚ÆRab5‚ÌðŒ•t‚«KO×–EŠ”‚Ì컂ɉ‚߂ĬŒ÷‚µ‚Ü‚µ‚½BKO×–E‚̉ðÍ‚ÌŒ‹‰ÊARab1‚ª‰ŠúƒGƒ“ƒhƒ\[ƒ€‚Ì×–E–Œ•ûŒü‚Ö‚Ì—A‘—‚ÉARab5‚ª‰ŠúEŒãŠúƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚Éd—v‚È–ðŠ„‚ð‰Ê‚½‚·‚±‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½B–{ƒc[ƒ‹‚ÌŠJ”­‚É‚æ‚èARab1‚âRab5‚Ì‚æ‚èÚׂȋ@”\‰ð–¾‚ª‰Â”\‚É‚È‚é‚à‚Ì‚ÆŠú‘Ò‚³‚ê‚Ü‚·BjiResearch Highlight‚É‘I’èj

 

i2020”Nj

 

20-1) Dolce, L. G., Ohbayashi, N., da Silva, D. F. C., Ferrari, A. J. R., Pirolla, R. A. S., Schwarzer, A. C. de A. P., Zanphorlin, L. M., Cabral, L., Fioramonte, M., Ramos, C. H. I., Gozzo, F. C., Fukuda, M., de Giuseppe P. O. and Murakami, M. T. (2020) Unveiling the interaction between the molecular motor Myosin Vc and the small GTPase Rab3A. J. Proteomics 212, 103549 [PubMed]

 

20-2) Kabayama, H., Takeuchi, M., Tokushige, N., Muramatsu, S. I., Kabayama, M., Fukuda, M., Yamada, Y. and Mikoshiba, K. (2020) An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat. Commun. 11, 336 [PubMed]mƒŠƒ“ƒNn

 

20-3) Ono, S., Otomo, A., Murakoshi S., Mitsui, S., Sato, K., Fukuda, M. and Hadano, S. (2020) ALS2, the small GTPase Rab17-interacting protein, regulates maturation and sorting of Rab17-associated endosomes. Biochem. Biophys. Res. Commun. 523, 908-915 [PubMed]

 

20-4) Kinoshita, R., Homma, Y. and Fukuda, M. (2020) Rab35GEFs, DENND1A and folliculin differentially regulate podocalyxin trafficking in two- and three-dimensional epithelial cell cultures. J. Biol. Chem. 295, 3652-3663 [PubMed]iŽ„’B‚͈ȑOA‚QŽŸŒ³‚Æ‚RŽŸŒ³‚Å”|—{‚µ‚½ã”ç×–EŠ”iMDCK II×–Ej‚É‚¨‚¢‚ÄARab35‚ªˆÙ‚È‚éƒGƒtƒFƒNƒ^[•ªŽq‚ÆŒ‹‡‚·‚邱‚Æ‚É‚æ‚èA’¸’[–ŒƒVƒOƒiƒ‹•ªŽqEpodocalyxin‚Ì—A‘—‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ä‚¢‚Ü‚·iJCB, 2016jB‚QŽŸŒ³”|—{‚Å‚Í’Êí‚Ìdishã‚ÉA‚RŽŸŒ³”|—{‚Å‚Í×–EŠOƒ}ƒgƒŠƒbƒNƒX‚̃Qƒ‹’†‚Åã”ç×–E—l‚Ì‘gD‚ðŒ`¬‚³‚¹‚Ü‚·‚ªAŠOŠÂ‹«‚̈Ⴂ‚ªRab35‚ÌŠˆ«‰»‚É—^‚¦‚é‰e‹¿‚Í‚±‚ê‚Ü‚Å‘S‚­–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab35‚Ìã—¬Šˆ«‰»ˆöŽq‚Ì’Tõ‚ðs‚¢A‚QŽŸŒ³”|—{‚Å‚ÍfolliculinA‚RŽŸŒ³”|—{‚Å‚ÍDENND1A‚Æ‚¢‚¤ˆÙ‚È‚éRab35GEF‚ª‹@”\‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

20-5) Marubashi, S. and Fukuda, M. (2020) Rab7B/42 is functionally involved in protein degradation on melanosomes in keratinocytes. Cell Struct. Funct. 45, 45-55 [PubMed]mƒŠƒ“ƒNnm2020 CSF Awardniƒƒ‰ƒmƒTƒCƒg‚ÅŒ`¬‚³‚ꂽƒƒ‰ƒjƒ“F‘f‚ðŠÜ‚Þƒƒ‰ƒmƒ\[ƒ€‚ÍÅI“I‚ɃPƒ‰ƒ`ƒmƒTƒCƒg‚ւƎ󂯓n‚³‚êA”§‚┯‚Ì–Ñ‚Ö‚Æ’¾’…‚µ‚Ü‚·‚ªAƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€‚ª‚»‚ÌŒã‚ǂ̂悤‚ȉ^–½‚ð’H‚é‚©‚Í—Ç‚­•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAEGFP-Rab1`45‚ð—p‚¢‚½–Ô—…“I‚È‹Ç݃XƒNƒŠ[ƒjƒ“ƒO‚É‚æ‚èAƒPƒ‰ƒ`ƒmƒTƒCƒg“à‚ÉŽæ‚螂܂ꂽƒƒ‰ƒmƒ\[ƒ€‚ÍA’Êí‚Ì’ápH‚̃Šƒ\ƒ\[ƒ€‚Å‚Í‚È‚­ALAMP1—z«ARab7B—z«‚Ì–¢’m‚̉敪‚É‘¶Ý‚·‚é‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B‚Ü‚½AM|INKiJB, 2017j‚ð‰ž—p‚µ‚½ƒƒ‰ƒmƒ\[ƒ€ã‚Ì’`”’Ž¿‚ÌV‹K•ª‰ð•]‰¿Œn‚ð\’z‚·‚邱‚Æ‚É‚æ‚èAƒƒ‰ƒjƒ“‡¬y‘f‚̃`ƒƒVƒi[ƒ[‚È‚Ç‚ª‚±‚̉敪‚ÅRab7BˆË‘¶“I‚É•ª‰ð‚³‚ê‚Ä‚¢‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B¡ŒãARab7B‚É‚æ‚郃‰ƒmƒ\[ƒ€‚Ì’`”’Ž¿‚ÌÚׂȕª‰ð‹@\‚ª–¾‚ç‚©‚É‚È‚ê‚ÎAƒPƒ‰ƒ`ƒmƒTƒCƒg“à‚ł̃ƒ‰ƒjƒ“‘ãŽÓ‚Ìlˆ×“I§Œä‚ɉž—p‚³‚ê‚邱‚Æ‚àŠú‘Ò‚³‚ê‚Ü‚·Bj

 

20-6) Wei, R., Sugiyama, A., Sato, Y., Nozumi, M., Nishino, H., Takahashi, M., Saito, T., Ando, K., Fukuda, M., Tomomura, M., Igarashi, M. and Hisanaga, S.-I. (2020) Isoform-dependent subcellular localization of LMTK1A and LMTK1B and their roles in axon outgrowth and spine formation. J. Bichoem. 168, 23-32 [PubMed] (•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)

 

20-7) Murata, T., Unno, Y. Fukuda, M. and Utsunomiya-Tate, N. (2020) The dynamic structure of Rab35 is stabilized in the presence of GTP under physiological conditions. Biochem. Biophys. Rep. 23, 100776 [PubMed]

 

20-8) Oguchi, M. E., Okuyama, K., Homma, Y. and Fukuda, M. (2020) A comprehensive analysis of Rab GTPases reveals a role for Rab34 in serum starvation-induced primary ciliogenesis. J. Biol. Chem. 295, 12674-12685 [PubMed] iˆêŽŸ‘@–ÑiƒVƒŠƒAj‚ÍŠOŠE‚©‚ç‚ÌŽhŒƒ‚ɑ΂·‚éƒZƒ“ƒT[‚Æ‚µ‚Ä“­‚«A—lX‚ȃVƒOƒiƒ‹Žó—e‚Éd—v‚È–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·BƒVƒŠƒA‚ÌŒ`¬‚ɂ̓_ƒCƒiƒ~ƒbƒN‚È–Œ“®‘Ô‚ª”º‚¤‚½‚ßA–Œ—A‘—‚̧ŒäˆöŽq‚Å‚ ‚é’ᕪŽq—ÊG’`”’Ž¿Rab‚ÌŠÖ—^‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚·‚ªARab‚É‚æ‚éƒVƒŠƒAŒ`¬§Œä‚ÌÚׂȕªŽqŠî”Õ‚Í–¢‚¾–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍAƒqƒg–Ô–ŒF‘fã”ç×–E—R—ˆ‚ÌhTERT-RPE1×–E‚ð—p‚¢‚ÄAƒVƒŠƒAŒ`¬‚É•K{‚ÈRab‚Ì–Ô—…“I‚ȃmƒbƒNƒ_ƒEƒ“iƒmƒbƒNƒAƒEƒgjƒXƒNƒŠ[ƒjƒ“ƒO‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊA‹Q‰ì—U“±«‚̃VƒŠƒAŒ`¬‚É‚Í‚±‚ê‚Ü‚Å‚ÉŠÖ—^‚ªŽ¦´‚³‚ê‚Ä‚¢‚½Rab8/10/11‚È‚Ç‚Å‚Í‚È‚­ARab34‚ª•K{‚Å‚ ‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj

 

20-9) Mizushima, T., Jiang, G., Kawahara, T., Li, P., Han, B., Inoue, S., Ide, H., Kato, I., Jalalizadeh, M., Miyagi, E., Fukuda, M., Reis, L. O. and Miyamoto, H. (2020) Androgen receptor signaling reduces the efficacy of Bacillus Calmette-Guérin therapy for bladder cancer via modulating Rab27b-induced exocytosis. Mol. Cancer Ther. 19, 1930-1942 [PubMed]

 

20-10) Kuwahara, T., Kai, F., Komori, T., Sakurai, M., Yoshii, G., Eguchi, T., Fukuda, M. and Iwatsubo, T. (2020) Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol. Dis. 145, 105081 [PubMed]

 

20-11) Bhat, S., Ljubojevic, N., Zhu, S., Fukuda, M., Echard, A. and Zurzolo C. (2020) Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci. Rep. 10, 16803 [PubMed]

 

20-12) Murakawa, T., Kiger, A. A., Sakamaki, Y., Fukuda, M. and Fujita, N. (2020) An autophagy-dependent tubular lysosomal network synchronizes degradative activity required for muscle remodeling. J. Cell Sci. 133, jcs248336 [PubMed]i“Œ‹žH‹Æ‘åŠw‚Ɉٓ®‚µ‚½“¡“c®M”ŽŽm‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅAƒVƒ‡ƒEƒWƒ‡ƒEƒoƒG‚Ì‹Ø“÷‚ÌÄ\¬Žž‚ÉoŒ»‚·‚éƒI[ƒgƒtƒ@ƒW[ˆË‘¶«‚ÌŠÇ󃊃\ƒ\[ƒ€‚Ì‘¶Ý‚𖾂炩‚É‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn[2020 JCS Prize]

 

20-13) Ohishi, Y., Ammann, S., Ziaee, V., Strege, K., Groß, M., Amos, C. V., Shahrooei, M., Ashournia, P., Razaghian, An., Griffiths, G. M., Ehl, S., Fukuda, M. and Parvaneh, N. (2020) Griscelli syndrome type 2 sine albinism: unraveling differential RAB27A effector engagement. Front. Immunol. 11, 612977 [PubMed]i”’”çǂ𔺂킸A–ƉuŽ¾Š³‚Ì‚Ý‚ðŽ¦‚·‚QŒ^ƒOƒŠƒZƒŠÇŒóŒQ‚ÌV‚µ‚¢RAB27A‚̕ψق̉ðÍ‚ðs‚¢‚Ü‚µ‚½BƒCƒ‰ƒ“A‰p‘Aƒxƒ‹ƒM[‚Ì‚SƒJ‘‚ÌŒ¤‹†ŽÒ‚É‚æ‚é‘Û‹¤“¯Œ¤‹†‚̬‰Ê‚Å‚·Ij

 

20-14) Yoshikawa-Murakami, C., Mizutani, Y., Ryu, A., Naru, E., Teramura, T., Homma, Y. and Fukuda, M. (2020) A novel method for visualizing melanosome and melanin distribution in human skin tissues. Int. J. Mol. Sci. 21, E8514 [PubMed]iƒƒ‰ƒjƒ“F‘f‚ð”FŽ¯‚·‚éHA-M-INK‚ÌV‹Kƒvƒ[ƒu‚ðŠJ”­‚µAƒqƒg‚̔畆‘gD‚ÌõF‚ɉž—p‚µ‚Ü‚µ‚½B‘gD“à‚É‚¨‚¯‚郃‰ƒjƒ“‚ÌŽOŽŸŒ³“I•ª•z‚ðŽ¦‚·‚±‚Ƃɉ‚߂ĬŒ÷‚µ‚Ü‚µ‚½BŠ”Ž®‰ïŽÐƒR[ƒZ[‚Æ‚ÌŽYŠw‹¤“¯Œ¤‹†‚̬‰Ê‚Å‚·IjmƒŠƒ“ƒNniTop Downloaded Papers 2020‚É‘I’èj

 

i2019”Nj

 

19-1) Morishita, S., Wada, N., Fukuda, M. and Nakamura, T. (2019) Rab5 activation on macropinosomes requires ALS2, and subsequent Rab5 inactivation through ALS2 detachment requires active Rab7. FEBS Lett. 593, 230-241 [PubMed]

 

19-2) Etoh, K. and Fukuda, M. (2019) Rab10 regulates tubular endosome formation through KIF13A and KIF13B motors. J. Cell Sci. 132, jcs226977 [PubMed]iFirst person‚ÅЉîjiŠÇóƒGƒ“ƒhƒ\[ƒ€‚Í‹ß”N”­Œ©‚³‚ꂽƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚̈êŽí‚ÅA×–E“à‚ÉŽæ‚螂܂ꂽ“Á’è‚Ì•ªŽqiω×j‚Ì‘I•Ê‚ÉŠÖ—^‚·‚é‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µAŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‹@\‚â‚»‚ÌÚׂȋ@”\‚ɂ‚¢‚Ä‚Í–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍA–Ô—…“I‚ÈRab‚Ì‹Ç݃XƒNƒŠ[ƒjƒ“ƒO‚ƃmƒbƒNƒAƒEƒg×–EŠ”‚̉ðÍ‚ð‘g‚݇‚킹‚邱‚Æ‚ÅAŠÂóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚É•K{‚̈öŽq‚Æ‚µ‚ÄRab10‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½B‚Ü‚½ARab10‚Í”÷¬ŠÇƒ‚[ƒ^[‚ÌKIF13A/B‚ÆŒ‹‡‚·‚邱‚Æ‚É‚æ‚èAŠÂóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚ÉŠÖ—^‚·‚邱‚Æ‚à–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½BjiHighlighted Article‚É‘I’èj

 

19-3) Takahashi, T., Minami, S., Tsuchiya, Y., Tajima, K., Sakai, N., Suga, K., Hisanaga, S.-I., Ohbayashi, N., Fukuda, M. and Kawahara, H. (2019) Cytoplasmic control of Rab family small GTPases through BAG6. EMBO Rep. 20, e46794 [PubMed]

 

19-4) Ohishi, Y., Kinoshita, R., Marubashi, S., Ishida, M. and Fukuda, M. (2019) The BLOC-3 subunit HPS4 is required for activation of Rab32/38 GTPases in melanogenesis, but its Rab9 activity is dispensable for melanogenesis. J. Biol. Chem. 294, 6912-6922 [PubMed]iHPS4‚ÍBLOC-3•¡‡‘Ì‚Ì\¬ˆöŽq‚ÅA‚»‚̕ψقɂæ‚è”’”çÇ‚ÌÇó‚ðŽ¦‚·ƒwƒ‹ƒ}ƒ“ƒXƒL[Eƒpƒhƒ‰ƒbƒNÇŒóŒQ‚ðˆø‚«‹N‚±‚µ‚Ü‚·B‹ß”NAHPS4‚ªRab32/38‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚Ä‹@”\‚·‚邾‚¯‚Å‚È‚­ARab9‚̃GƒtƒFƒNƒ^[‚Æ‚µ‚Ä‚àì—p‚·‚邱‚Æ‚ª•ñ‚³‚êA“ñ‚‚ÌRab‚ªƒJƒXƒP[ƒh‚ð\¬‚·‚éiRab9‚ÉŒ‹‡ŒãARab32/38‚ðŠˆ«‰»‚·‚éj‚±‚Æ‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚µ‚½B‚µ‚©‚µA‚±‚ê‚ç‚ÌRab‚Ì‹@”\“I‚ÈŠÖŒW‚Í‚±‚ê‚܂ʼnðÍ‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab32/38‚ðŠˆ«‰»‚Å‚«‚È‚¢•ÏˆÙ‘Ì‚âRab9‚ÆŒ‹‡‚Å‚«‚È‚¢•ÏˆÙ‘Ì‚ð컂·‚邱‚Æ‚É‚æ‚èARab32/38‚ÌŠˆ«‰»‚̓ƒ‰ƒjƒ“Œ`¬‚É•s‰ÂŒ‡‚Å‚ ‚邪ARab9‚Æ‚ÌŒ‹‡‚Í•K{‚Å‚È‚¢‚±‚Æ‚ð‚Í‚¶‚ß‚Ä–¾‚ç‚©‚É‚µ‚Ü‚µ‚½Bj

 

19-5) Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P. S., Marubashi, S., Oguchi, M. E., Ishida, M., Fujita, N. and Fukuda, M. (2019) Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J. Cell Biol. 218, 2035-2050 [PubMed]iã”ç×–E—R—ˆ‚ÌMDCK×–E‚ð—p‚¢‚ÄACRISPR/Cas9‚̃Qƒmƒ€•ÒW‹Zp‚É‚æ‚èAšM“û—Þ‚É‹¤’Ê‚µ‚Ä‘¶Ý‚·‚é58Ží—Þ‘S‚Ä‚ÌRab‚̃mƒbƒNƒAƒEƒgiKOjƒRƒŒƒNƒVƒ‡ƒ“‚ð¢ŠE‚ʼn‚ß‚Ä컂µ‚Ü‚µ‚½IKO×–E‚̉ðÍ‚ÌŒ‹‰ÊA‚¢‚¸‚ê‚ÌRab‚ÌKO×–E‚Å‚àã”ç×–E‚É“Á—L‚Ì’¸’ê‹É«‚ÍŒ`¬‚³‚ê‚Ü‚·‚ªARab6‚ÌKO×–E‚Å‚Ì‚ÝŠî’ê–Œ‚ªŒ`¬‚³‚ê‚È‚¢‚±‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½BÚׂȉðÍ‚ÌŒ‹‰ÊARab6‚͉—n«’`”’Ž¿‘S”Ê‚Ì•ª”å‚Éd—v‚Å‚·‚ªA–Œ’`”’Ž¿‚Ì×–E–Œ‚Ö‚Ì—A‘—‚É‚Í•K{‚Å‚Í‚È‚¢‚±‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½B‰Â—n«’`”’Ž¿‚Æ–Œ’`”’Ž¿‚Í“¯‚¶•ª”åŒo˜H‚É‚æ‚èƒSƒ‹ƒW‘Ì‚©‚ç×–E–Œ‚Ü‚Å—A‘—‚³‚ê‚邽‚ßA—¼ŽÒ‚̓Sƒ‹ƒW‘Ì‚Å“¯‚¶—A‘—¬–E‚É‘I•Ê‚³‚ê‚é‚ƈê”Ê“I‚Él‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA¡‰ñ‚Ì”­Œ©‚É‚æ‚èARab6”ñ‘¶Ý‰º‚Å‚Í–Œ’`”’Ž¿‚͉—n«’`”’Ž¿‚Ƃ͈قȂéŽd‘g‚Ý‚Å—A‘—‚³‚ê‚邱‚Æ‚ª‹­‚­Ž¦´‚³‚êA‚»‚ÌŽd‘g‚Ý‚ª–¾‚ç‚©‚É‚È‚ê‚΋³‰È‘‚Ì‹LÚ•ÏX‚É‚à‚‚Ȃª‚é‚à‚Ì‚ÆŠú‘Ò‚³‚ê‚Ü‚·BjmƒŠƒ“ƒNn

 

19-6) Inoue, J., Ninomiya, M., Umetsu, T., Nakamura, T., Kogure, T., Kakazu, E., Iwata, T., Takai, S., Sano, A., Fukuda, M., Watashi, K., Isogawa, M., Tanaka, Y., Shimosegawa, T., McNiven, M. A. and Masamune, A. (2019) Small interfering RNA screening for the small GTPase Rab proteins identifies that Rab5B as a major regulator of hepatitis B virus production. J. Virol. 93, e00621-19 [PubMed]

 

19-7) Furusawa, K., Takasugi, T., Chiu, Y.-W., Hori, Y., Tomita, T., Fukuda, M. and Hisanaga, S.-I. (2019) CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway. J. Biol. Chem. 294, 10886-10899 [PubMed]

 

19-8) Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H. and Aoki, M. (2019) Extracellular ƒ¿-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis. FASEB J. 33, 10240-10256 [PubMed]

 

19-9) Wei, Z., Zhang, M., Li, C., Huang, W., Fan, Y., Guo, J., Khater, M., Fukuda, M., Dong, Z. Hu, G. and Wu, G. (2019) Specific TBC domain-containing proteins control the ER-Golgi-plasma membrane trafficking of GPCRs. Cell Rep. 28, 554-566 [PubMed]iF1000Prime‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

19-10) Arango Duque, G., Jardim, A., Gagnon, É., Fukuda, M. and Descoteaux, A. (2019) The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathog. 15, e1007982 [PubMed]mƒŠƒ“ƒNn

 

19-11) Nishino, H., Saito, T., Wei, R., Takano, T., Tsutsumi, K., Taniguchi, M., Ando, K., Tomomura, M., Fukuda, M. and Hisanaga, S.-I. (2019) The LMTK1TBC1D9BRab11A cascade regulates dendritic spine formation via endosome trafficking. J. Neurosci. 39, 9491-9502 [PubMed]

 

i2018”Nj

 

18-1) Oguchi, M. E., Etoh, K. and Fukuda, M. (2018) Rab20, a novel Rab small GTPase that negatively regulates neurite outgrowth of PC12 cells. Neurosci. Lett. 662, 324-330 [PubMed]i_Œo‰ñ˜H–Ô‚ªŒ`¬‚³‚ê‚éÛ‚É‚ÍA_Œo“Ë‹N‚ªL’·‚µ‚½‚èA‘Þk‚µ‚½‚è‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·B‚±‚ê‚Ü‚Å“–Œ¤‹†Žº‚Å‚ÍA_Œo“Ë‹NL’·‚ð‘£i‚·‚éi³‚ɧŒä‚·‚éj’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rab‚Ì‹@”\‰ðÍ‚ðs‚Á‚Ä—ˆ‚Ü‚µ‚½‚ªA•‰‚ɧŒä‚·‚éRab‚ɂ‚¢‚Ä‚Í‚Ù‚Æ‚ñ‚Ç•ñ‚ª‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAPC12×–E‚ð—p‚¢‚ÄA_Œo“Ë‹NL’·‚𕉂ɧŒä‚·‚éRab‚̃mƒbƒNƒ_ƒEƒ“ƒXƒNƒŠ[ƒjƒ“ƒO‚ðs‚¢A_Œo“Ë‹NL’·‚ð§Œä‚·‚éV‹KRab‚Æ‚µ‚ÄRab20‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½Bj

 

18-2) Yoshida, S., Hasegawa, T., Suzuki, M., Sugeno, N., Kobayashi, J., Ueyama, M., Fukuda, M., Ido-Fujibayashi, A., Sekiguchi, K., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Mochizuki, H., Nagai, Y. and Aoki, M. (2018) Parkinsonfs disease-linked DNAJC13 mutation aggravates alpha-synuclein-induced neurotoxicity through perturbation of endosomal trafficking. Hum. Mol. Genet. 27, 823-836 [PubMed]mƒŠƒ“ƒNniF1000Prime‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

18-3) Kuchitsu, Y., Homma, Y., Fujita, N. and Fukuda, M. (2018) Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation. J. Cell Sci. 131, jcs215442 [PubMed]i’ᕪŽq—ÊG’`”’Ž¿Rab7‚ÍŒãŠúƒGƒ“ƒhƒ\[ƒ€‚É‚¨‚¯‚é–Œ—A‘—‚¾‚¯‚Å‚È‚­AƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ƃŠƒ\ƒ\[ƒ€‚Ì—Z‡‰ß’ö‚É‚àŠÖ—^‚·‚é‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA¡‰ñšM“û“®•¨×–E‚ÅRab7‚̃mƒbƒNƒAƒEƒgiKOjŠ”‚ðŽ÷—§‚µ‚½‚Æ‚±‚ëARab7‚̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚ƃŠƒ\ƒ\[ƒ€‚Ì—Z‡‚É‚Í•K{‚Å‚Í‚È‚­ARab7-KOŠ”‚ł̓I[ƒgƒŠƒ\ƒ\[ƒ€‚ª’~Ï‚µ‚Ä‚¢‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½B‚Ü‚½A’~Ï‚µ‚Ä‚¢‚½ƒI[ƒgƒŠƒ\ƒ\[ƒ€‚ªAƒOƒ‹ƒ^ƒ~ƒ“‹Q‰ì‚É‚æ‚èÁŽ¸‚·‚é‚Æ‚¢‚¤‹»–¡[‚¢Œ»Û‚àŒ©o‚µ‚Ü‚µ‚½B‚·‚È‚í‚¿A‰h—{‹Q‰ì‚É‚æ‚éŽhŒƒ‚̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÌŒ`¬‚¾‚¯‚Å‚È‚­A‚»‚̬n‰ß’ö‚à‘£i‚·‚邱‚Æ‚ª‰‚ß‚Ä–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½BjiHighlighted Article‚É‘I’èj

 

18-4) Ogawa, M., Matsuda, R., Takada, N., Tomokiyo, M., Yamamoto, S., Shizukuishi, S., Yamaji, T., Yoshikawa, Y., Yoshida, M., Tanida, I., Koike, M., Murai, M., Morita, H., Takeyama, H., Ryo, A., Guan, J.-L., Yamamoto, M., Inoue, J. I., Yanagawa, T., Fukuda, M., Kawabe, H. and Ohnishi, M. (2018) Molecular mechanisms of Streptococcus pneumoniae-targeted autophagy via pneumolysin, Golgi-resident Rab41, and Nedd4-1 mediated K63-linked ubiquitination. Cell. Microbiol. 20, e12846 [PubMed]

 

18-5) Kanemitsu-Fujita, A., Morishita, S., Kjaer, S., Fukuda, M., Schiavo, G. and Nakamura, T. (2018) Comparable affinity of RabGDIƒ¿ for GTP- and GDP-bound forms of Rab7 supports a four-state transition model for Rab7 subcellular localization. bioRxiv 287516 [link]

 

18-6) Eguchi, T., Kuwahara, T., Sakurai, M., Komori, T., Fujimoto, T., Ito, G., Yoshimura, S.-I., Harada, A., Fukuda, M., Koike, M. and Iwatsubo, T. (2018) LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc. Natl. Acad. Sci. U.S.A. 115, E9115-E9124 [PubMed]mƒŠƒ“ƒNn

 

18-7) Zhu, S., Bhat, S., Syan, S., Kuchitsu, Y., Fukuda, M. and Zurzolo, C. (2018) Rab11a-Rab8a cascade regulate the formation of tunneling nanotubes through vesicle recycling. J. Cell Sci. 131, jcs215889 [PubMed]

 

18-8) Hatta, T., Iemura, S.I., Ohishi, T., Nakayama, H., Seimiya, H., Yasuda, T., Iizuka, K., Fukuda, M., Takeda, J., Natsume, T. and Horikawa, Y. (2018) Calpain-10 regulates actin dynamics by proteolysis of microtubule-associated protein 1B. Sci. Rep. 8, 16756 [PubMed]

 

i2017”Nj

 

17-1) Furusawa, K., Asada, A., Urrutia, P., Gonzalez-Billault, C., Fukuda, M. and Hisanaga, S. I. (2017) Cdk5 regulation of the GRAB-mediated Rab8-Rab11 cascade in axon outgrowth. J. Neurosci. 37, 790-806 [PubMed]

 

17-2) Fujita, N., Huang, W., Lin, T.-H., Groulx, J.-F., Jean, S., Nguyen, J., Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M. and Kiger, A. A. (2017) Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. eLife 6, e23367 [PubMed]i“¡“c®M•‹³‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅAƒVƒ‡ƒEƒV゙ƒ‡ƒEƒn゙ƒG‚Ì‹Ø×–E‚©゙•Ï‘ÔŠú‚ɃI[ƒgƒtƒ@ƒV゙[‚É‚æ‚è‘å‹K–Í‚Éì‚è‘Ö‚¦‚ç‚ê‚錻ۂðŒ©o‚µAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ƃŠƒ\ƒ\[ƒ€‚Ì—Z‡‚ð§Œä‚·‚éV•ªŽq‚Æ‚µ‚ÄRab2‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

17-3) Ishida, M., Marubashi, S. and Fukuda, M. (2017) M-INK, a novel tool for visualizing melanosomes and melanocores. J. Biochem. 161, 323-326 [PubMed]iƒƒ‰ƒmƒTƒCƒg‚ÅŒ`¬‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€iƒƒ‰ƒjƒ“F‘fj‚ÍÅI“I‚ɃPƒ‰ƒ`ƒmƒTƒCƒg‚ւƎ󂯓n‚³‚êA”§‚┯‚Ì–Ñ‚Ö‚Æ’¾’…‚µ‚Ü‚·‚ªA‚»‚̎󂯓n‚µ‚Ì•ªŽq‹@\‚ÍŽÀ‚Í‚Ù‚Æ‚ñ‚lj𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB‰ð–¾‚ª’x‚ê‚Ä‚¢‚éÅ‘å‚Ì——R‚̈ê‚‚Ƃµ‚ÄAƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€‚ð“KØ‚ÉŒŸo‚·‚éƒc[ƒ‹‚ª–³‚¢‚±‚Æ‚ª‹“‚°‚ç‚ê‚Ü‚·B¡‰ñŽ„’B‚ÍAƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€‚ðŒø—¦—Ç‚­ŒŸo‚·‚éV‹K‚̃c[ƒ‹EwM-INKx‚ÌŠJ”­‚ɬŒ÷‚µ‚Ü‚µ‚½B¡ŒãAM-INK‚ð‹ìŽg‚·‚邱‚Æ‚É‚æ‚èAƒPƒ‰ƒ`ƒmƒTƒCƒg‚ւ̃ƒ‰ƒmƒ\[ƒ€‚̎󂯓n‚µ‚Ì•ªŽq‹@\‚ª‰ð–¾‚³‚ê‚邱‚Æ‚ªŠú‘Ò‚³‚ê‚Ü‚·BjmƒŠƒ“ƒNn

 

17-4) Aoki, Y., Manzano, R., Lee, Y., Dafinca, R., Aoki, M., Douglas, A. G. L., Varela, M. A., Sathyaprakash, C., Scaber, J., Barbagallo, P., Vader, P., Mäger, I., Ezzat, K., Turner, M. R., Ito, N., Gasco, S., Ohbayashi, N., El-Andaloussi, S., Takeda, S., Fukuda, M., Talbot, K. and Wood, M. J. A. (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140, 887-897 [PubMed]iEditorfs choice‚É‘I’èj

 

17-5) Kabayama, H., Tokushige, N., Takeuchi, M., Kabayama, M., Fukuda, M. and Mikoshiba, K. (2017) Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination. Mol. Cell. Neurosci. 80, 89-99 [PubMed]

 

17-6) Oguchi, M. E., Noguchi, K. and Fukuda, M. (2017) TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells. PLoS One 12, e0174883 [PubMed]iƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Í×–E–Œã‚Ì•ªŽq‚̃ŠƒTƒCƒNƒ‹‚¾‚¯‚Å‚È‚­A×–EŽ¿•ª—ôAƒI[ƒgƒtƒ@ƒW[A_Œo“Ë‹NL’·‚Ȃǂ̶–½Œ»Û‚É‚¨‚¢‚Äd—v‚È–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·BƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Å‚Ì•¨Ž¿—A‘—‚ɂ͒ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rab11‚È‚Ç‚ªŠÖ—^‚µ‚Ü‚·‚ªA‚»‚ÌŽž‹óŠÔ“I‚ȧŒä‚Í\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍARab‚Ì•sŠˆ«‰»ˆöŽq‚Æl‚¦‚ç‚ê‚Ä‚¢‚é43Ží—Þ‚ÌTBCƒ^ƒ“ƒpƒNŽ¿‚É’…–Ú‚µAƒŠƒTƒCƒNƒGƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Å‹@”\‚·‚éV‹KTBCƒ^ƒ“ƒpƒNŽ¿‚Ì’Tõ‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊATBC1D12‚ªRab11‚ÆŒ‹‡‚µ‚ăŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‹ÇÝ‚µARab11ˆË‘¶“I‚É_Œo“Ë‹NL’·‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

17-7) Takahama, M., Fukuda, M., Ohbayashi, N., Kozaki, T., Misawa, T., Okamoto, T., Matsuura, Y., Akira, S. and Saitoh, T. (2017) The RAB2B-GARIL5 complex promotes cytosolic DNA-induced innate immune responses. Cell Rep. 20, 2944-2954 [PubMed]

 

17-8) Klein, O., Roded, A., Zur, N., Azouz, N. P., Pasternak, O., Hirschberg, K., Hammel, I., Roche, P. A., Yatsu, A., Fukuda, M., Galli, S. J. and Sagi-Eisenberg, R. (2017) Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Sci. Rep. 7, 15315 [PubMed]

 

17-9) Li, C., Wei, Z., Fan, Y., Huang, W., Su, Y., Li, H., Dong, Z., Fukuda, M., Khater, M. and Wu, G. (2017) The GTPase Rab43 controls the anterograde ER-Golgi trafficking and sorting of GPCRs. Cell Rep. 21, 1089-1101 [PubMed]

 

i2016”Nj

 

16-1) Hirano, S., Uemura, T., Annoh, H., Fujita, N., Waguri, S., Itoh, T. and Fukuda, M. (2016) Differing susceptibility to autophagic degradation activity of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1. Autophagy 12, 312-326 [PubMed]iRab33B•sŠˆ«‰»ˆöŽqEOATL1‚ÍLC3‚ÆŒ‹‡‚·‚邱‚Æ‚É‚æ‚èƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ɃŠƒNƒ‹[ƒg‚µAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ƃŠƒ\ƒ\[ƒ€‚Ì—Z‡‰ß’ö‚ð§Œä‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·BLC3‚̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚Ì“à–Œ‚ÆŠO–Œ‚Ì—¼•û‚É‹ÇÝ‚·‚邽‚ßA“à‘¤‚ÌLC3‚̓I[ƒgƒtƒ@ƒW[‚É‚æ‚蕪‰ð‚³‚ê‚Ü‚·BLC3‚ÆŒ‹‡‚·‚ép62‚àƒI[ƒgƒtƒ@ƒW[‚É‚æ‚镪‰ð‚ðŽó‚¯‚Ü‚·‚ªAOATL1‚͉½ŒÌ‚©ƒI[ƒgƒtƒ@ƒW[‚̊‚É‚Í‚È‚è‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍAOATL1‚ªƒI[ƒgƒtƒ@ƒW[‚É‚æ‚镪‰ð‚©‚ç‰ñ”ð‚·‚é‹@\‚̉𖾂Ɏæ‚è‘g‚ÝAOATL1‚Íp62‚Ƃ͈قȂèƒIƒŠƒSƒ}[‰»”\‚ðŽ‚½‚¸A‘I‘ð“I‚ɃI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÌŠO–Œ‚É‹ÇÝ‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

16-2) Marubashi, S., Shimada, H., Fukuda, M. and Ohbayashi, N. (2016) RUTBC1 functions as a GTPase-activating protein for Rab32/38 and regulates melanogenic enzyme trafficking in melanocytes. J. Biol. Chem. 291, 1427-1440 [PubMed]iƒƒ‰ƒjƒ“‡¬y‘f‚̃ƒ‰ƒmƒ\[ƒ€‚Ö‚Ì—A‘—‚É‚ÍRab32/38‚ª•K{‚Ì–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·B‚±‚ê‚Ü‚Å‚ÌŒ¤‹†‚ÅARab32/38‚̃GƒtƒFƒNƒ^[•ªŽq‚Æ‚µ‚ÄVarpAŠˆ«‰»ˆöŽqiGEFj‚Æ‚µ‚ÄBLOC-3•¡‡‘ÌiHPS1/4j‚ª“¯’肳‚ê‚Ä‚¢‚Ü‚·‚ªAƒƒ‰ƒmƒTƒCƒg‚Å‹@”\‚·‚éRab32/38•sŠˆ«‰»ˆöŽqiGAPj‚Ì‘¶Ý‚Í–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARUTBC1‚Æ‚¢‚¤TBC’`”’Ž¿‚ªƒƒ‰ƒmƒTƒCƒg‚É‚¨‚¢‚ÄRab32/38‚Ì•sŠˆ«‰»ˆöŽq‚Æ‚µ‚Ä‹@”\‚µAƒƒ‰ƒjƒ“‡¬y‘f‚̧Œä‚ÉŠÖ‚í‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B®A–{Œ¤‹†‚Í’}”g‘åŠw‚Ɉٓ®‚µ‚½‘å—Ñ“T•F”ŽŽm‚Æ‚Ì‹¤“¯Œ¤‹†‚Å‚·Bj

 

16-3) Yasuda, S., Morishita, S., Fujita, A., Nanao, T., Wada, N., Waguri, S., Schiavo, G., Fukuda, M. and Nakamura, T. (2016) Mon1-Ccz1 activates Rab7 only on late endosomes and dissociates from the lysosome in mammalian cells. J. Cell Sci. 129, 329-340 [PubMed]iIn this issue‚É‘I’èj

 

16-4) Efergan, A., Azouz, N. P., Klein, O., Noguchi, K., Rothenberg, M. E., Fukuda, M. and Sagi-Eisenberg, R. (2016) Rab12 regulates retrograde transport of mast cell secretory granules by interacting with the RILP-dynein complex. J. Immunol. 196, 1091-1101 [PubMed]

 

16-5) Hashimoto, A., Oikawa, T., Hashimoto, S., Sugino, H., Yoshikawa, A., Otsuka, Y., Handa, H., Onodera, Y., Nam, J.-M., Oneyama, C., Okada, M., Fukuda, M. and Sabe, H. (2016) P53- and mevalonate pathwaydriven malignancies require Arf6 for metastasis and drug resistance. J. Cell Biol. 213, 81-95 [PubMed]iIn Focus‚É‘I’èj

 

16-6) Mrozowska, P. S. and Fukuda, M. (2016) Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures. J. Cell Biol. 213, 355-369 [PubMed]iSpotlight‚É‘I’èjiF1000Prime‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èjiã”ç×–E‚ׂ͗臂Á‚½×–E‚â×–EŠOƒ}ƒgƒŠƒbƒNƒX‚ÆÚ‚·‚鑤’ê–Œ‚Æ‚¢‚·゙‚ê‚Æ‚àÚ‚µ‚È‚¢’¸’[–Œ‚ðŽ‚¿A—¼ŽÒ‚Í–§’…Œ‹‡‚É‚æ‚èŠu‚Ä‚ç‚ê‚Ä‚¢‚Ü‚·B‚±‚Ì‚½‚ßA‚»‚ꂼ‚ê‚Ì–Œ‚Å“­‚­ƒ^ƒ“ƒpƒNŽ¿‚Í‹É«—A‘—‚ƌĂ΂ê‚é“ÁŽê‚È—A‘—ƒVƒXƒeƒ€‚Å–Ú“I’n‚ɉ^‚΂ê‚é•K—v‚ª‚ ‚è‚Ü‚·‚ªA‚»‚ÌÚׂȎd‘g‚Ý‚Í—Ç‚­•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍAMDCK II×–E‚ð—p‚¢‚ÄAƒVƒOƒiƒ‹•ªŽq‚̈êŽí‚Å‚ ‚épodocalyxin‚Ì’¸’[–Œ‚Ö‚Ì—A‘—‹@\‚ðÚׂɉðÍ‚µA‚QŽŸŒ³‚Æ‚RŽŸŒ³iƒVƒXƒgj‚Å”|—{‚µ‚½ã”ç×–E‚ł͈قȂéƒZƒbƒg‚ÌRab‚âƒGƒtƒFƒNƒ^[•ªŽq‚ªpodocalyxin‚Ì—A‘—‚ð§Œä‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj

 

16-7) Marubashi, S., Ohbayashi, N. and Fukuda, M. (2016) A Varp-binding protein, RACK1, regulates dendrite outgrowth through stabilization of Varp protein in mouse melanocytes. J. Invest. Dermatol. 136, 1672-1680 [PubMed]iVarp•ªŽq‚Í‚SŽí—Þ‚ÌRabiRab21, Rab32/38, Rab40Cj‚̧ŒäˆöŽq‚Æ‚µ‚Ä‹@”\‚µAƒƒ‰ƒmƒTƒCƒg‚É‚¨‚¢‚ÄŽ÷ó“Ë‹N‚ÌŒ`¬‚⃃‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª‚±‚ê‚Ü‚Å‚É–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚·B¡‰ñŽ„’B‚ÍAVarp•ªŽq‚ÌV‚½‚ÈANRK2Œ‹‡ˆöŽq‚Æ‚µ‚ÄRACK1‚ðŒ©o‚µ‚Ü‚µ‚½BRACK1‚ÍRab40C‚Æ‹£‡‚·‚邱‚Æ‚É‚æ‚èVarp•ªŽq‚̈À’艻‚ÉŠñ—^‚·‚邽‚ßARACK1ƒmƒbƒNƒ_ƒEƒ“×–E‚Å‚ÍVarp•ªŽq‚ªŒ¸­‚µAŒ‹‰Ê“I‚ÉŽ÷ó“Ë‹N‚ÌL’·‚⃃‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ª‘jŠQ‚³‚ê‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½Bj

 

16-8) Wankel, B., Ouyang, J., Guo, X., Hadjiolova, K., Miller, J., Liao, Y., Tham, D. K. L., Romih, R., Andrade, L. R., Gumper, I., Simon, J.-P., Sachdeva, R., Tolmachova, T., Seabra, M. C., Fukuda, M., Schaeren-Wiemers, N., Hong, W. J., Sabatini, D. D., Wu, X.-R., Kong, X., Kreibich, G., Rindler, M. J. and Sun T.-T. (2016) Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol. Biol. Cell 27, 1621-1634 [PubMed]

 

16-9) Homma, Y. and Fukuda, M. (2016) Rabin8 regulates neurite outgrowth in both GEF-activity-dependent and -independent manners. Mol. Biol. Cell 27, 2107-2118 [PubMed]iA Highlights from MBoC Selection‚É‘I’èji_Œo“Ë‹N‚ðL’·‚·‚éÛ‚É‚ÍAŠj‹ß–T‚̃ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç“Ë‹N•ûŒü‚Ö‚Ì–Œ—A‘—‚ªd—v‚Å‚ ‚èA‚±‚̉ߒö‚É‚ÍRab8, Rab11, Rab35‚Ȃǂ̒ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿‚ÌŠÖ—^‚ª–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚·B‚±‚ê‚ç‚ÌRab‚Í_Œo¬’·ˆöŽqˆË‘¶“I‚ÉŠˆ«‰»‚³‚êAƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‹ÇÝ‚·‚é‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA‚»‚Ì•ªŽq‹@\‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab8‚Ìã—¬Šˆ«‰»ˆöŽqiGEFj‚Æ‚µ‚Ä’m‚ç‚ê‚éRabin8‚Ì‹@”\‰ðÍ‚ðs‚¢A‚±‚Ì•ªŽq‚ªƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‚¨‚¢‚ÄRab8‚¾‚¯‚Å‚È‚­Rab10‚ÌŠˆ«‰»‚ð‰î‚µ‚Ä_Œo“Ë‹N‚ÌL’·‚ð‘£i‚·‚邾‚¯‚Å–³‚­ARab11ˆË‘¶“I‚ÉGEFŠˆ«‚Æ‚Í–³ŠÖŒW‚É_Œo“Ë‹NL’·‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

16-10) Mankouri, J., Walter, C., Stewart, H., Bentham, M. J., Park, W. S., Heo, W. D., Fukuda, M., Griffin, S. and Harris, M. (2016) Release of infectious hepatitis C virus from Huh7 cells occurs via a trans-Golgi network to endosome pathway independent of very-low-density lipoprotein secretion. J. Virol. 90, 7159-7170 [PubMed]

 

16-11) Villarroel-Campos, D., Henriquez, D. R., Bodaleo, F. J., Oguchi, M. E., Bronfman, F. C., Fukuda, M. and Gonzalez-Billault, C. (2016) Rab35 functions in axon elongation are regulated by p53-related protein kinase (PRPK) in a mechanism that involves Rab35 protein degradation and the microtubule-associated protein 1B. J. Neurosci. 36, 7298-7313 [PubMed]

 

16-12) Bello, O. D., Cappa A. I., de Paola M., Zanetti, M. N., Fukuda, M., Fissore, R. A., Mayorga, L. S. and Michaut, M. A. (2016) Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs. Exp. Cell Res. 347, 42-51 [PubMed]

 

16-13) Makino, A., Hullin-Matsuda, F., Murate, M., Abe, M., Tomishige, N., Fukuda, M., Yamashita, S., Fujimoto, T., Vidal, H., Lagarde, M., Delton-Vandenbroucke, I. and Kobayashi, T. (2016) Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Mol. Biol. Cell 27, 3293-3304 [PubMed]

 

i2015”Nj

 

15-1) Yatsu, A., Shimada, H., Ohbayashi, N. and Fukuda, M. (2015) Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of Varp in melanocytes. Biol. Open 4, 267-275 [PubMed]iVarp•ªŽq‚ÍN––’[‘¤‚ÌVPS9ƒhƒƒCƒ“‚ð‰î‚µ‚ÄRab21‚ðŠˆ«‰»‚·‚邱‚Æ‚É‚æ‚胃‰ƒmƒTƒCƒg‚ÌŽ÷ó“Ë‹N‚ÌŒ`¬‚ð‘£i‚µA’†‰›‚ÌANKR1ƒhƒƒCƒ“‚ð‰î‚µ‚ÄRab32/38‚ðŒ‹‡‚·‚邱‚Æ‚É‚æ‚胃‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªAC––’[‘¤‚Ɉʒu‚·‚éANKR2ƒhƒƒCƒ“‚Ì‹@”\‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍANKR2ƒhƒƒCƒ“‚ÉRab40C‚ª“ÁˆÙ“I‚ÉŒ‹‡‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½BRab40C‚Í‘¼‚̈ê”Ê“I‚ÈRab‚Ƃ͈قȂèASOCSƒ{ƒbƒNƒX‚ƌĂ΂ê‚郆ƒrƒLƒ`ƒ“ƒŠƒK[ƒ[‚ðƒŠƒNƒ‹[ƒg‚·‚é—̈æ‚ðŽ‚¿AVarp•ªŽq‚ðƒvƒƒeƒAƒ\[ƒ€ˆË‘¶“I‚É•ª‰ð‚·‚邱‚Æ‚ª–¾‚ç‚©‚Æ‚È‚è‚Ü‚µ‚½B‚±‚Ì‚½‚ßARab40C‚ð‰ßè‚É”­Œ»‚·‚郃‰ƒmƒTƒCƒg‚Å‚ÍAVarp•ªŽq‚Ì•ª‰ð‚ª˜´i‚µAƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ª‘jŠQ‚³‚ê‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

15-2) Ishida, M., Ohbayashi, N. and Fukuda, M. (2015) Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP. Sci. Rep. 5, 8238 [PubMed]iƒƒ‰ƒjƒ“F‘f‚ðŠÜ‚Þ¬nƒƒ‰ƒmƒ\[ƒ€‚Í”÷¬ŠÇ‚ƃAƒNƒ`ƒ“üˆÛ‚ɉˆ‚Á‚Ä×–E–ŒŽü•Ó‚Ü‚Å—A‘—‚³‚ê‚Ü‚·‚ªA”÷¬ŠÇã‚̇s«—A‘—‚ÌŽd‘g‚Ý‚Í‚±‚ê‚Ü‚Å\•ª‚É—‰ð‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAˆÈ‘O•ñ‚µ‚½”÷¬ŠÇ‡s«—A‘—‚̧ŒäˆöŽqERab1A‚̃GƒtƒFƒNƒ^[•ªŽq‚Æ‚µ‚ÄSKIP/PLEKHM2‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BSKIP‚͇s«‚̃‚[ƒ^[‚Å‚ ‚éƒLƒlƒVƒ“I‚ÆŒ‹‡‚µAƒƒ‰ƒmƒ\[ƒ€‚ð—A‘—‚·‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½B‚Ü‚½ASKIP‚̓Šƒ\ƒ\[ƒ€ã‚ÌArl8‚ƌĂ΂ê‚é•Ê‚̒ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿‚Æ‚àŒ‹‡‚µAƒŠƒ\ƒ\[ƒ€‚Ì—A‘—‚É‚àŠÖ‚í‚邱‚Æ‚©‚çASKIP-ƒLƒlƒVƒ“I‚ÍRab1A‚ÆArl8‚ð“Æ—§‚̃J[ƒSƒŒƒZƒvƒ^[‚Æ‚µ‚Ä—p‚¢‚Ä“ñŽí—ނ̃Iƒ‹ƒKƒlƒ‰‚ð—A‘—‚µ•ª‚¯‚é‹@\‚ªŽ¦´‚³‚ê‚Ü‚µ‚½Bj

 

15-3) Etoh, K. and Fukuda, M. (2015) Structure-function analyses of the small GTPase Rab35 and its efffector protein centaurin-ƒÀ2/ACAP2 during neurite outgrowth of PC12 cells. J. Biol. Chem. 290, 9064-9074 [PubMed]iRab35‚̓ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç‚̬–E—A‘—‚ð§Œä‚µA_Œo“Ë‹NL’·A×–E•ª—ôA×–EˆÚ“®‚È‚Ç—lX‚ȶ—Œ»Û‚ÉŠÖ—^‚µ‚Ü‚·BRab35‚Í7Ží—ÞˆÈã‚̃GƒtƒFƒNƒ^[•ªŽq‚ÆŒ‹‡‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA‚»‚ê‚ç‚ÌRab35”FŽ¯‚Ì•ªŽqŠî”Õ‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab35‚Æcentaurin-ƒÀ2‚Ì\‘¢‹@”\‘ŠŠÖ‚ÉŠÖ‚·‚錤‹†‚ðs‚¢AŒ‹‡‚É•K{‚ȃAƒ~ƒmŽ_‚Ì“¯’è‚ɉ‚߂ĬŒ÷‚µ‚Ü‚µ‚½BRab35‚̃XƒCƒbƒ`II—̈æ‚É‘¶Ý‚·‚é“ñ‚‚ÌThrŽcŠî‚ɕψقð‰Á‚¦‚½Rab35•ÏˆÙ‘Ì‚Å‚ÍAcentaurin-ƒÀ2‚Æ‚ÌŒ‹‡‚Ì‚Ý‚ªŒ‡‘¹‚µA_Œo“Ë‹N‚ÌL’·‚ð‘£i‚·‚éŒø‰Ê‚ªÁŽ¸‚µ‚Ä‚¢‚Ü‚µ‚½B¡ŒãA‚±‚̕ψّ̂ð—p‚¢‚邱‚Æ‚É‚æ‚èRab35Ecentaurin-ƒÀ2•¡‡‘Ì‚ª‚ǂ̂悤‚ȶ—Œ»Û‚ÉŠÖ—^‚·‚é‚Ì‚©‚ð‰ðÍ‚·‚é‚Ì‚É—L—p‚Æl‚¦‚ç‚ê‚Ü‚·Bj

 

15-4) Amagai, Y., Itoh, T., Fukuda, M. and Mizuno, K. (2015) Rabin8 suppresses autophagosome formation independently of its guanine nucleotide-exchange activity towards Rab8. J. Biochem. 158, 139-153 [PubMed]

 

15-5) Yasuda, T., Homma, Y. and Fukuda, M. (2015) Slp2-a inactivates ezrin by recruiting protein phosphatase 1 to the plasma membrane. Biochem. Biophys. Res. Commun. 460, 896-902 [PubMed]iSlp2-a‚ÍMDCK×–E‚É‚¨‚¯‚é‹É«—A‘—‚â×–E‚Ì‘å‚«‚³§Œä‚ÉŠÖ—^‚µ‚Ä‚¨‚èASlp2-aŒ‡‘¹×–E‚Å‚Í×–E”ì‘å‚ÌÇó‚ðŽ¦‚·‚±‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·B‚±‚Ì×–E”ì‘å‚É‚Íezrin‚ƌĂ΂ê‚éƒVƒOƒiƒ‹•ªŽq‚̉ßè‚ÈŠˆ«‰»‚ªŠÖ—^‚·‚邱‚Æ‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚µ‚½‚ªA‚»‚ÌÚׂȎd‘g‚Ý‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍASlp2-a‚ÌV‚½‚ÈŒ‹‡•ªŽq‚Æ‚µ‚ÄPP1‚ƌĂ΂ê‚éƒzƒXƒtƒ@ƒ^[ƒ[‚𓯒肵A‚±‚ÌPP1‚ª×–E–Œã‚Åezrin‚ð’EƒŠƒ“Ž_‰»‚·‚邱‚Æ‚É‚æ‚èA×–E‚Ì‘å‚«‚³‚ðƒRƒ“ƒpƒNƒg‚ɕۂ‚±‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

15-6) Imai, A., Tsujimura, M., Yoshie, S. and Fukuda, M. (2015) The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells. Biochem. Biophys. Res. Commun. 461, 469-474 [PubMed]i“ú–{Ž•‰È‘åŠw‚Ì¡ˆä‚ ‚©‚Ë”ŽŽm‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅARab33A‚ªŠO•ª”å×–E‚Å‚ ‚é‘Á‰t‘B‘B–[×–E‚Ì•ª”åè÷—±ã‚É‚à‘¶Ý‚µAƒAƒ~ƒ‰[ƒ[‚Ì•ª”å‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

15-7) Shimada-Sugawara, M., Sakai, E., Okamoto, K., Fukuda, M., Izumi, T., Yoshida, N. and Tsukuba, T. (2015) Rab27A regulates transport of cell surface receptors modulating multinucleation and lysosome-related organelles in osteoclasts. Sci. Rep. 5, 9620 [PubMed]

 

15-8) Egami, Y., Fujii, M., Kawai, K., Ishikawa, Y., Fukuda, M. and Araki, N. (2015) Activation-inactivation cycling of Rab35 and ARF6 is required for phagocytosis of zymosan in RAW264 macrophages. J. Immunol. Res. 2015:429439 [PubMed]

 

15-9) Aizawa, M. and Fukuda, M. (2015) Small GTPase Rab2B and its specific binding protein Golgi-associated Rab2B interactor-like 4 (GARI-L4) regulate Golgi morphology. J. Biol. Chem. 290, 22250-22261 [PubMed]iRab‚É‚æ‚é–Œ—A‘—‚̓Sƒ‹ƒW‘̂ȂǃIƒ‹ƒKƒlƒ‰‚ÌŒ`‘Ô‚âƒAƒCƒfƒ“ƒeƒBƒeƒB[‚Éd—v‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B¡‰ñŽ„’B‚ÍAƒSƒ‹ƒW‘Ì‚ÌŒ`‘Ô‚ÉŠÖ‚í‚éRab•ªŽq‚Ì–Ô—…“I‹@”\‰ðÍ‚ðs‚¢A­‚È‚­‚Æ‚à˜Z‚‚ÌRab•ªŽqiRab1A/1B/2A/2B/6B/8Aj‚ªHeLa-S3×–E‚̃Rƒ“ƒpƒNƒg‚ȃSƒ‹ƒW‘Ì‚ÌŒ`‘ÔˆÛŽ‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B‚Ü‚½Ai‰»“I‚É•Û‘¶«‚ª‚‚­—ÞŽ—‚Ì‹@”\‚ðŽ‚‚Ƅ‘ª‚³‚ê‚Ä‚¢‚½Rab2A‚ÆRab2B‚ªƒSƒ‹ƒW‘Ì‚ÌŒ`‘ÔˆÛŽ‚É‚¨‚¢‚Ä‚Í“Æ—§‚É‹@”\‚·‚邱‚Ƃ𖾂炩‚É‚µARab2B“ÁˆÙ“I‚ÈŒ‹‡•ªŽq‚Æ‚µ‚ÄGARI-L4‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½Bj

 

i2014”Nj

 

14-1) Ikawa, K., Satou, A., Fukuhara, M., Matsumura, S. Sugiyama, N., Goto, H., Fukuda, M., Inagaki, M., Ishihama, Y. and Toyoshima, F. (2014) Inhibition of endocytic vesicle fusion by Plk1-mediated phosphorylation of vimentin during mitosis. Cell Cycle 13, 126-137 [PubMed]

 

14-2) Yasuda, T. and Fukuda, M. (2014) Slp2-a controls renal epithelial cell size through regulation of Rapezrin signaling independently of Rab27. J. Cell Sci. 127, 557-570 [PubMed]iSlp2-a‚ÍRab27ƒGƒtƒFƒNƒ^[‚Æ‚µ‚Ä‹@”\‚·‚邱‚Æ‚É‚æ‚è’¸’[•”×–E–Œ‚ւ̬–E—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚µ‚½‚ªA¡‰ñŽ„’B‚ÍSlp2-a‚ªRab27A‚Ì‹@”\‚Æ‚Í–³ŠÖŒW‚ÉMDCK×–Eit‘Ÿ”A׊Çã”ç×–E—R—ˆj‚Ì‘å‚«‚³‚ð§Œä‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B‚·‚È‚í‚¿ASlp2-a‚Í‚±‚ê‚Ü‚Å‹@”\‚ª–¾‚ç‚©‚Å‚Í‚È‚©‚Á‚½C2BƒhƒƒCƒ“‚ð‰î‚µ‚ÄRap1GAP2‚ð×–E–Œ‚ɃŠƒNƒ‹[ƒg‚µA×–E‚Ì‘å‚«‚³‚ðƒRƒ“ƒpƒNƒg‚É•Û‚Â–ðŠ„‚ð’S‚Á‚Ä‚¢‚Ü‚µ‚½Bt‘Ÿ”ì‘å‚𔺂¤”X–E«tŽ¾Š³‚̃‚ƒfƒ‹ƒ}ƒEƒX‚Å‚ÍASlp2-a‚̈Ùí‚È”­Œ»‚àŠÏŽ@‚³‚êA”X–E«tŽ¾Š³”­Ç‚Æ‚ÌŠÖ˜A«‚à–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

14-3) Azouz, N. P., Zur, N., Efergan, A., Ohbayashi, N., Fukuda, M., Amihai, D., Hammel, I., Rothenberg, M. E. and Sagi-Eisenberg, R. (2014) Rab5 is a novel regulator of mast cell secretory granules: impact on size, cargo and exocytosis. J. Immunol. 192, 4043-4053 [PubMed] (•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)

 

14-4) Ishida, M., Arai, S. P., Ohbayashi, N. and Fukuda, M. (2014) The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol: Development of a novel melanosome-targeting tag. J. Biol. Chem. 289, 11059-11067 [PubMed]iƒƒ‰ƒmƒ\[ƒ€‚̓ƒ‰ƒjƒ“F‘f‚ð‡¬E’™‘ ‚·‚é“ÁŽê‚ȃIƒ‹ƒKƒlƒ‰‚Å‚·Bƒƒ‰ƒmƒ\[ƒ€‚Å‹@”\‚·‚镪Žq‚̓ƒ‰ƒmƒ\[ƒ€‚É“ÁˆÙ“I‚É—A‘—‚³‚ê‚é•K—v‚ª‚ ‚è‚Ü‚·‚ªA‚±‚ê‚܂Ńƒ‰ƒmƒ\[ƒ€‚Ö‚Ì—A‘—ƒVƒOƒiƒ‹‚Í‚Ù‚Æ‚ñ‚Ç•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAƒƒ‰ƒmƒ\[ƒ€‚Ì”÷¬ŠÇ‹ts«—A‘—‚ð§Œä‚·‚郃‰ƒmƒŒƒMƒ…ƒŠƒ“•ªŽq‚ð‰ü•Ï‚µA”CˆÓ‚Ì•ªŽq‚ð¬nƒƒ‰ƒmƒ\[ƒ€‚É•t’…‚³‚¹‚éV‹Kƒ^ƒO(MST, melanosome-targeting tag)‚ðŠJ”­‚·‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

14-5) Takano, T., Urushibara, T., Yoshioka, N., Saito, T., Fukuda, M., Tomomura, M. and Hisanaga, S. (2014) LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Mol. Biol. Cell 25, 1755-1768 [PubMed]

 

14-6) Matsui, T., Noguchi, K. and Fukuda, M. (2014) Dennd3 functions as a guanine nucleotide exchange factor for small GTPase Rab12 in mouse embryonic fibroblasts. J. Biol. Chem. 289, 13986-13995 [PubMed]iRab12‚Í×–E–Œã‚̃Aƒ~ƒmŽ_ƒgƒ‰ƒ“ƒXƒ|[ƒ^[PAT4‚Ì•ª‰ð‚ð§Œä‚·‚邱‚Æ‚Å×–E“àƒAƒ~ƒmŽ_—Ê‚ð’²ß‚µAmTORC1‚ÌŠˆ«‰»‚âƒI[ƒgƒtƒ@ƒW[‚̧Œä‚ÉŠÖ—^‚·‚邱‚Æ‚ª‚±‚ê‚Ü‚Å‚É–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚·‚ªARab12‚ª‚ǂ̂悤‚ÉŠˆ«‰»‚³‚ê‚é‚Ì‚©‚Æ‚¢‚Á‚½Žž‹óŠÔ“I‚ȧŒäŠî”Õ‚Í–¢‚¾‰ð–¾‚³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍARab12‚Ìã—¬‚Ɉʒu‚·‚銈«‰»ˆöŽq‚Æ‚µ‚ÄDennd3‚Æ‚¢‚¤’`”’Ž¿‚𓯒肵A‚»‚Ì‹@”\‰ðÍ‚ðs‚¢‚Ü‚µ‚½Bj

 

14-7) Sugeno, N., Hasegawa, T., Tanaka, N., Fukuda, M., Wakabayashi, K., Oshima, R., Konno, M., Miura, E., Kikuchi, A., Baba, T., Anan, T., Nakao, M., Geisler, S., Aoki, M. and Takeda, A. (2014) Lys-63-linked ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized ƒ¿-synuclein. J. Biol. Chem. 289, 18137-18151 [PubMed]

 

14-8) Kobayashi, H., Etoh, K. and Fukuda, M. (2014) Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth. Small GTPases 5, e29290 [PubMed]iRab35‚Í_Œo¬’·ˆöŽqiNGFjˆË‘¶“I‚È_Œo“Ë‹NL’·‚É•s‰ÂŒ‡‚ȈöŽq‚ÅANGFŽhŒƒŒã‚ɃŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ÉWÏ‚·‚邱‚Æ‚ª‚±‚ê‚Ü‚Å–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚·B¡‰ñŽ„’B‚ÍA_Œo“Ë‹NŒ`¬Œã‚ÌRab35‚Ì“®‘Ô‚ð‰ðÍ‚µARab35‚ªƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç_Œo“Ë‹N‚Ìæ’[‚Ɉړ®‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B‚±‚ê‚ç‚ÌŒ‹‰Ê‚©‚çARab35‚̓ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç_Œo“Ë‹N‚Ìæ’[‚ւ̬–E—A‘—‚ð‘£i‚µA‰½‚ç‚©‚Ì•ªŽq‚ð“Ë‹N‚Ìæ’[‚É‹Ÿ‹‹‚µ‚Ä‚¢‚é‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚·Bj

 

14-9) Mori, Y., Fukuda, M. and Henley, J. M. (2014) Small GTPase Rab17 regulates the surface expression of kainate receptors but not ƒ¿-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of Syntaxin-4 protein. J. Biol. Chem. 289, 20773-20787 [PubMed]i‰p‘ƒuƒŠƒXƒgƒ‹‘åŠw‚É—¯Šw‚µ‚½X–õ“T”ŽŽm‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅAŽ÷ó“Ë‹N‚É“ÁˆÙ“I‚É‹ÇÝ‚·‚éRab17‚ªƒVƒ“ƒ^ƒLƒVƒ“4‚Ì—A‘—‚ð‰î‚µ‚ÄAƒJƒCƒjƒ“Ž_Žó—e‘Ì‚Ì×–E•\–Ê‚Ö‚Ì”­Œ»‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

14-10) Nishiyama, H., Koizumi, M., Ogawa, K., Kitamura, S., Konyuba, Y., Watanabe, Y. Ohbayashi, N., Fukuda, M., Suga, M. and Sato, C. (2014) Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications. Ultramicroscopy 147, 86-97 [PubMed]

 

14-11) Kobayashi, H., Etoh, K., Ohbayashi, N. and Fukuda, M. (2014) Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth. Biol. Open 3, 803-814 [PubMed]iRab35‚Í_Œo¬’·ˆöŽqiNGFjˆË‘¶“I‚ɃŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ÉMICAL-L1‚Ȃǂ̃GƒtƒFƒNƒ^[•ªŽq‚ðƒŠƒNƒ‹[ƒg‚·‚邱‚Æ‚É‚æ‚èA_Œo“Ë‹N‚ÌL’·‚ð‘£i‚µ‚Ü‚·B¡‰ñŽ„’B‚ÍAMICAL-L1‚ªRab35‚¾‚¯‚Å‚È‚­•¡”‚ÌRab‚ÆŒ‹‡‚·‚邱‚Æ‚É’…–Ú‚µARab35-MICAL-L1‚ªƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‚³‚ç‚ÉRab8, Rab13, Rab36‚ðWÏ‚³‚¹‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½iuRabƒNƒ‰ƒXƒ^[‰»v‚Æ–½–¼jB‚±‚ê‚ç‚ÌRab‚Í‚³‚ç‚ÉJIP4‚È‚Ç‚Ì“ÁˆÙ“I‚ȃGƒtƒFƒNƒ^[•ªŽq‚ðƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ɌĂў‚Þ‚±‚Æ‚ÅA_Œo“Ë‹N•ûŒü‚ւ̬–E—A‘—‚ð‘£i‚·‚é‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚µ‚½Bj

 

14-12) Arango Duque, G., Fukuda, M., Turco, S. J., Stäger, S. and Descoteaux, A. (2014) Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of Synaptotagmin XI. J. Immunol. 193, 2363-2372 [PubMed]

 

14-13) Nishikimi, A., Ishihara, S., Ozawa, M., Etoh, K., Fukuda, M., Kinashi, T. and Katagiri, K. (2014) Rab13 acts downstream of the kinase Mst1 to deliver the integrin LFA-1 to the cell surface for lymphocyte trafficking. Sci. Signal. 7, ra72 [PubMed]

 

14-14) McGough, I. J., Steinberg, F., Gallon, M., Yatsu, A., Ohbayashi, N., Heesom, K., Fukuda, M. and Cullen, P. J. (2014) Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma membrane recycling. J. Cell Sci. 127, 4940-4953 [PubMed]iIn this issue‚É‘I’èjiŒfÚŒã‚ÍMost-read Articles‚É‚à“ü‚è’…–Ú‚³‚ê‚Ü‚µ‚½Ij

 

14-15) Gallo, L. I., Liao, Y., Ruiz, W. G., Clayton, D. R., Li, M., Liu, Y.-J., Jiang, Y., Fukuda, M., Apodaca, G. and Yin, X.-M. (2014) TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Mol. Biol. Cell 25, 3779-3797 [PubMed]iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

i2013”Nj

 

13-1) Onoue, K., Jofuku, A., Ban-Ishihara, R., Ishihara, T., Maeda, M., Koshiba, T., Itoh, T., Fukuda, M., Otera, H., Oka, T., Takano, H., Mizushima, N., Mihara, K. and Ishihara, N. (2013) Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J. Cell Sci. 126, 176-185 [PubMed]iIn this issue‚É‘I’èj

 

13-2) Nagai, H., Yasuda, S., Ohba, Y., Fukuda, M. and Nakamura, T. (2013) All members of the EPI64 subfamily of TBC/RabGAPs also have GAP activities toward Ras. J. Biochem. 153, 283-288 [PubMed]

 

13-3) Arango Duque, G., Fukuda, M. and Descoteaux, A. (2013) Synaptotagmin XI regulates phagocytosis and cytokine secretion in macrophages. J. Immunol. 190, 1737-1745 [PubMed]

 

13-4) Mori, Y., Matsui, T. and Fukuda, M. (2013) Rabex-5 protein regulates dendritic localization of small GTPase Rab17 and neurite morphogenesis in hippocampal neurons. J. Biol. Chem. 288, 9835-9847 [PubMed]iŽ„’B‚Í‚±‚ê‚Ü‚ÅŽ÷ó“Ë‹N‚Ì‚Ý‚É‹ÇÝ‚µAŽ÷ó“Ë‹N‚ÌŒ`‘ÔŒ`¬‚âƒ|ƒXƒgƒVƒiƒvƒX‚ÌŒ`¬‚ÉŠÖ—^‚·‚éRab17‚𓯒肵‚Ä‚¢‚Ü‚·‚ªA‚»‚ÌŠˆ«‰»‹@\‚Í“ä‚É•ï‚Ü‚ê‚Ä‚¢‚Ü‚µ‚½B¡‰ñŽ„’B‚ÍARab17‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚ÄRabex-5‚ðŒ©o‚·‚±‚ƂɬŒ÷‚µ‚Ü‚µ‚½BRabex-5‚ÍRab5, Rab17‚ðŠÜ‚Þ•¡”‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚Äì—p‚µAŽ÷ó“Ë‹N‚݂̂Ȃ炸AŽ²õ‚ÌŒ`‘ÔŒ`¬‚É‚àŠÖ—^‚·‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½Bj

 

13-5) Matsui, T. and Fukuda, M. (2013) Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep. 14, 450-457 [PubMed]iƒI[ƒgƒtƒ@ƒW[‚̓_ƒCƒiƒ~ƒbƒN‚È–Œ“®‘Ԃ𔺂¤×–E“à•ª‰ðŒn‚Å‚·‚ªARab•ªŽq‚ÌŠÖ—^‚Í–¢‚¾\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚̓}ƒEƒX‚É‘¶Ý‚·‚é‘S‚Ä‚ÌRab‚ð‘ÎÛ‚Æ‚µ‚½ƒmƒbƒNƒ_ƒEƒ“ŽÀŒ±‚É‚æ‚èAV‚½‚ȃI[ƒgƒtƒ@ƒW[§ŒäˆöŽq‚Æ‚µ‚ÄRab12‚𓯒肵‚Ü‚µ‚½BRab12‚Í×–E–Œã‚̃Aƒ~ƒmŽ_ƒgƒ‰ƒ“ƒXƒ|[ƒ^[PAT4‚Ì•ª‰ð‚ð§Œä‚·‚邱‚Æ‚É‚æ‚è×–E“àƒAƒ~ƒmŽ_—Ê‚Ì’²ß‚ÉŠÖ—^‚µAmTORC1‚ÌŠˆ«‚ɉe‹¿‚ð—^‚¦‚邱‚Æ‚ÅŠÔÚ“I‚ɃI[ƒgƒtƒ@ƒW[‚̧Œä‚ðs‚¤‚Æ‚¢‚¤V‹K‚Ì•ªŽq‹@\‚ð‰ð–¾‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNnihot off the press‚É‘I’èjiŒfÚŒã‚ÍTop downlaods‚É‚à“ü‚è’…–Ú‚³‚ê‚Ü‚µ‚½Ij

 

13-6) Chiba, S., Amagai, Y., Homma, Y., Fukuda, M. and Mizuno, K. (2013) NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from phosphatidylserine to Sec15. EMBO J. 32, 874-885 [PubMed]

 

13-7) Yatsu, A., Ohbayashi, N., Tamura, K. and Fukuda, M. (2013) Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes. J. Invest. Dermatol. 133, 2237-2246 [PubMed]iƒƒ‰ƒmƒ\[ƒ€‚Ì’†‚Ńƒ‰ƒjƒ“F‘f‚ð‡¬‚·‚邽‚ß‚É‚ÍAƒƒ‰ƒjƒ“‡¬y‘f‚ðƒƒ‰ƒmƒ\[ƒ€‚Ì’†‚Ö—A‘—‚·‚é•K—v‚ª‚ ‚è‚Ü‚·‚ªA¬–E‚ʼn^‚΂ê‚Ä—ˆ‚½ƒƒ‰ƒjƒ“‡¬y‘f‚ª‚ǂ̂悤‚Ƀƒ‰ƒmƒ\[ƒ€‚Ɏ󂯓n‚³‚ê‚é‚Ì‚©‚Í‚±‚ê‚Ü‚Å•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚̓}ƒEƒX‚Ì”|—{ƒƒ‰ƒmƒTƒCƒg‚ð—p‚¢‚ÄA‚±‚̉ߒö‚É–Œ‚Ì—Z‡‘•’u‚Å‚ ‚éSNAREƒ^ƒ“ƒpƒNŽ¿syntaxin-3ASNAP23AVAMP7‚Ì•¡‡‘Ì‚ªŠÖ—^‚·‚邱‚Æ‚ð‰‚ß‚Ä–¾‚ç‚©‚É‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

13-8) Kobayashi, H. and Fukuda, M. (2013) Rab35 establishes the EHD1-association site by coordinating two distinct effectors during neurite outgrowth. J. Cell Sci. 126, 2424-2435 [PubMed]i_Œo“Ë‹N‚ªL’·‚·‚邽‚ß‚É‚ÍA×–E‘Ì‚©‚ç‚Ì–Œ‚â’`”’Ž¿‚Ì‹Ÿ‹‹‚ª•s‰ÂŒ‡‚ÅA‚±‚̉ߒö‚ɂ͒ᕪŽq—ÊG’`”’Ž¿Rab35‚ªd—v‚È–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·‚ªA‚»‚ÌÚׂȋ@”\‚Í–¢‚¾–¾‚ç‚©‚É‚È‚Á‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍARab35‚ªcentaurin ƒÀ2‚ɉÁ‚¦AMICAL-L1‚Æ‚¢‚¤•Ê‚̃GƒtƒFƒNƒ^[•ªŽq‚ðŠjŽü•Ó‚̃ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ɃŠƒNƒ‹[ƒg‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½BRab35‚ð‚±‚ê‚ç‚Ì•ªŽq‚Æ‚ÌŒ‹‡‚ð’Ê‚µ‚ÄA•ªŽqƒnƒTƒ~imolecular scissorsj‚ÌEHD1‚ª“­‚­ê‚ð’ñ‹Ÿ‚µA¬–E‚Ì‚­‚Ñ‚è‚Æ‚è‚Æ“Ë‹N•ûŒü‚Ö‚Ì—A‘—‚𑣂·‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚µ‚½Bj

 

13-9) Fuchigami, T., Sato, Y., Tomita, Y., Takano, T., Miyauchi, S., Tsuchiya, Y., Saito, T., Kubo, K., Nakajima, K., Fukuda, M., Hattori, M. and Hisanaga, S. (2013) Dab1-mediated colocalization of multi-adaptor protein CIN85 with Reelin-receptors, ApoER2 and VLDLR, in neurons. Genes Cells 18, 410-424 [PubMed]

 

13-10) Mori, Y., Matsui, T., Omote, D. and Fukuda, M. (2013) Small GTPase Rab39A interacts with UACA and regulates the retinoic acid-induced neurite morphology of Neuro2A cells. Biochem. Biophys. Res. Commun. 435, 113-119 [PubMed]iRab39‚Í“®•¨ŠE‚ÉL‚­•Û‘¶‚³‚ꂽRabƒAƒCƒ\ƒtƒH[ƒ€‚ÅAšM“û“®•¨‚Å‚ÍRab39A‚ÆRab39B‚Ì“ñŽí—Þ‚ª‘¶Ý‚µ‚Ä‚¢‚Ü‚·BRab39B‚̕ψق̓qƒg‚ÌX˜A½¸_’x‰„‚ðˆø‚«‹N‚±‚µ‚Ü‚·‚ªA‚»‚Ì”­Ç‚ÌŽd‘g‚Ý‚Í–¢‚¾‰ð–¾‚³‚ê‚Ä‚¢‚Ü‚¹‚ñB–{˜_•¶‚Å‚ÍARab39‚Ì_ŒoŒn‚É‚¨‚¯‚é–ðŠ„‚ð–¾‚ç‚©‚É‚·‚邽‚ßARab39‚É“ÁˆÙ“I‚ȃGƒtƒFƒNƒ^[•ªŽq‚Ì“¯’è‚ðŽŽ‚Ý‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊAUACA‚Æ‚¢‚¤•ªŽq‚ªRab39‚É“ÁˆÙ“I‚ÉŒ‹‡‚·‚邱‚ÆARab39A‚ÆUACA‚ÍNeuro2A×–E‚Ì_Œo“Ë‹N‚ÌŽ÷ó—lŒ`‘Ô‚ð§Œä‚·‚邱‚Æ‚ª–¾‚ç‚©‚Æ‚È‚è‚Ü‚µ‚½Bj

 

13-11) Bar-Gill, A. B., Efergan, A., Seger, R., Fukuda, M. and Sagi-Eisenberg, R. (2013) The extra-cellular signal regulated kinases ERK1 and ERK2 segregate displaying distinct spatiotemporal characteristics in activated mast cells. Biochim. Biophys. Acta - Mol. Cell Res. 1833, 2070-2082 [PubMed]

 

13-12) Imai, A., Ishida, M., Fukuda, M., Nashida, T. and Shimomura, H. (2013) MADD/DENN/Rab3GEP functions as a guanine nucleotide exchange factor for Rab27 during granule exocytosis of rat parotid acinar cells. Arch. Biochem. Biophys. 536, 31-37 [PubMed]

 

13-13) Kobayashi, H. and Fukuda, M. (2013) Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes. Commun. Integr. Biol. 6, e25036 [PubMed]iƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Í×–E–Œã‚ÌŽó—e‘Ì’`”’Ž¿‚Ȃǂ̃ŠƒTƒCƒNƒŠƒ“ƒO‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA_Œo“Ë‹N‚ÌL’·‚Ì‚½‚ß‚Ì–Œ‹Ÿ‹‹Œ¹‚Æ‚µ‚Ä‚à‹ß”N’–Ú‚ðW‚ß‚Ä‚¢‚Ü‚·BArf6ARab11Aƒgƒ‰ƒ“ƒXƒtƒFƒŠƒ“Žó—e‘̂̓ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚̃}[ƒJ[‚Æ‚µ‚Ä—Ç‚­’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªAPC12×–E‚Ì_Œo“Ë‹NL’·‰ß’ö‚Å‚ÍA‚±‚ê‚ç‚̃}[ƒJ[‚ª‘S‚­ˆÙ‚È‚é×–E“à‹ÇÝ‚ðŽ¦‚·‚±‚Æ‚ð–{˜_•¶‚ÅŒ©o‚µ‚Ü‚µ‚½BƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‚Í‹@”\‚̈قȂéƒTƒuƒhƒƒCƒ“‚ª‘¶Ý‚µA_Œo“Ë‹NL’·Žž‚É‚ÍAArf6—z«‚Ì’†S‘Ì‹ß–T‚̃ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ªd—v‚È–ðŠ„‚ð‰Ê‚½‚·‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚·Bj

 

13-14) Ljubicic, S., Bezzi, P., Brajkovic, S., Nesca, V., Guay, C., Ohbayashi, N., Fukuda, M., Abderrahmani, A. and Regazzi, R. (2013) The GTPase Rab37 participates in the control of insulin exocytosis. PLoS One 8, e68255 [PubMed]

 

13-15) Fujita, N., Morita, E., Itoh, T., Tanaka, A., Nakaoka, M., Osada, Y., Umemoto, T., Saitoh, T., Nakatogawa, H., Kobayashi, S., Haraguchi, T., Guan, J. L., Iwai, K., Tokunaga, F., Saito, K., Ishibashi, K., Akira, S., Fukuda, M., Noda, T. and Yoshimori, T. (2013) Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 203, 115-128 [PubMed]iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

i2012”Nj

 

12-1) Brozzi, F., Diraison, F., Lajus, S., Rajatileka, S., Philips, T., Regazzi, R., Fukuda, M., Verkade, P., Molnár, E. and Varadi, A. (2012) Molecular mechanism of myosin Va recruitment to dense core secretory granules. Traffic 13, 54-69 [PubMed]

 

12-2) Ohbayashi, N., Maruta, Y., Ishida, M. and Fukuda, M. (2012) Melanoregulin regulates retrograde melanosome transport through interaction with the RILPp150Glued complex in melanocytes. J. Cell Sci. 125, 1508-1518 [PubMed]iRab27A‚ðˆâ“`“I‚ÉŒ‡‘¹‚·‚郃‰ƒmƒTƒCƒg‚Å‚ÍAƒAƒNƒ`ƒ“ˆË‘¶«‚̃ƒ‰ƒmƒ\[ƒ€—A‘—áŠQ‚Ì‚½‚ßAƒƒ‰ƒmƒ\[ƒ€‚ªŠjŽü•Ó‚Å‹­‚­‹ÃW‚µ‚Ü‚·B–Ê”’‚¢‚±‚Æ‚ÉA‚±‚Ì‹ÃW‚Ídsuˆâ“`Žq‚Ì‚³‚ç‚Ȃ錇‘¹‚É‚æ‚背ƒXƒLƒ…[‚³‚êA³í‚È–ÑF‚ɖ߂邱‚Æ‚ªŒÃ‚­‚©‚ç’m‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA‚»‚Ì•œ‹A‚Ì•ªŽq‹@\‚Í30”N‹ß‚­‰ð–¾‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAdsu‚̈â“`ŽqŽY•¨Mreg‚ª‹ts«‚Ì”÷¬ŠÇƒ‚[ƒ^[‚Æ‘ŠŒÝì—p‚·‚邱‚Æ‚É‚æ‚èAŠjŽü•Ó‚Ƀƒ‰ƒmƒ\[ƒ€‚ð‹ÃW‚³‚¹‚Ä‚¢‚邱‚Æ‚ð‰‚ß‚Ä“Ë‚«Ž~‚ß‚Ü‚µ‚½BjmƒŠƒ“ƒNniIn this issue‚É‘I’èj

 

12-3) Ohbayashi, N., Yatsu, A., Tamura, K. and Fukuda, M. (2012) The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes. Mol. Biol. Cell 23, 669-678 [PubMed]iRab32/38‚̃GƒtƒFƒNƒ^[‚Æ‚µ‚Ä“¯’肳‚ꂽVarp•ªŽq‚É‚ÍARab32/38‚ðŒ‹‡‚·‚éANKR1ƒhƒƒCƒ“‚ɉÁ‚¦ARab21‚ðŠˆ«‰»‚·‚éVPS9ƒhƒƒCƒ“‚ª‘¶Ý‚µ‚Ü‚·B‚µ‚©‚µA‚±‚ê‚Ü‚ÅVPS9ƒhƒƒCƒ“‚̃ƒ‰ƒmƒTƒCƒg‚Å‚Ì‹@”\‚Í–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍA‚±‚ÌVPS9ƒhƒƒCƒ“‚ÉŽ÷ó“Ë‹N‚ÌŒ`¬‘£iì—p‚ª‚ ‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½B‚·‚È‚í‚¿AVarp‚Í•ªŽq“à‚É‘¶Ý‚·‚é“ñ‚‚ÌRabƒVƒOƒiƒŠƒ“ƒOƒhƒƒCƒ“iANKR1ƒhƒƒCƒ“‚ÆVPS9ƒhƒƒCƒ“j‚Ì‹@”\‚ðŽg‚¢•ª‚¯‚邱‚Æ‚É‚æ‚èAuƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—v‚ÆuŽ÷ó“Ë‹N‚ÌŒ`¬v‚Æ‚¢‚¤“ñ‚‚̈قȂé—A‘—ƒvƒƒZƒX‚ð§Œä‚·‚鑽‹@”\•ªŽq‚Å‚ ‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½jmƒŠƒ“ƒNn

 

12-4) Chesneau, L., Dambournet, D., Machicoane, M., Kouranti, I., Fukuda, M., Goud, B. and Echard, A. (2012) An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol. 22, 147-153 [PubMed]

 

12-5) Kobayashi, H. and Fukuda, M. (2012) Rab35 regulates Arf6 activity through centaurin-ƒÀ2 (ACAP2) during neurite outgrowth. J. Cell Sci. 125, 2235-2243 [PubMed]i_Œoƒlƒbƒgƒ[ƒN‚ð\’z‚·‚邽‚ß‚É‚ÍA_Œo×–E‚ª³‚µ‚­_Œo“Ë‹N‚ðL‚΂·‚±‚Æ‚ª•s‰ÂŒ‡‚Å‚·B¡‰ñŽ„’B‚ÍARab35‚Æ‚»‚̃GƒtƒFƒNƒ^[•ªŽqcentaruin ƒÀ2‚ªAŠjŽü•Ó‚̃ŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‘¶Ý‚·‚éArf6‚ð•sŠˆ«‰»‚·‚邱‚Æ‚É‚æ‚èA_Œo“Ë‹N‚ÌL’·‰ß’ö‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B“ñŽí—ނ̈قȂé’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿ARab35‚ÆArf6‚ÌV‚½‚ȃNƒƒXƒg[ƒN‚Ì”­Œ©‚Å‚·IjiIn this issue‚É‘I’èj

 

12-6) Mori, Y., Matsui, T., Furutani, Y., Yoshihara, Y. and Fukuda, M. (2012) Small GTPase Rab17 regulates dendritic morphogenesis and postsynaptic development of hippocampal neurons. J. Biol. Chem. 287, 8963-8973 [PubMed]iŽ„’B‚Ì”]‚ð\¬‚·‚é_Œo×–E‚ÍAŽ²õ‚ÆŽ÷ó“Ë‹N‚ðL‚΂µAƒVƒiƒvƒX‚ðŒ`¬‚·‚邱‚Æ‚É‚æ‚è_Œo×–E‚̃lƒbƒgƒ[ƒN‚ðŒ`¬‚µ‚Ä‚¢‚Ü‚·BŽ²õ•ûŒü‚É‚ÍŽ²õ‚Å‚Ì‚Ý‚Å‹@”\‚·‚镪ŽqAŽ÷ó“Ë‹N‚É‚ÍŽ÷ó“Ë‹N‚Å‚Ì‚Ý‚Å‹@”\‚·‚镪Žq‚ð—A‘—‚·‚邱‚Æi‹É«—A‘—j‚ª•s‰ÂŒ‡‚Å‚·‚ªA‚±‚ê‚Ü‚Å‚»‚Ì•ªŽq‹@\‚Í\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAŽ÷ó“Ë‹N‚Ì‚Ý‚É‹ÇÝ‚·‚éV‹KRab‚Æ‚µ‚ÄRab17‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BRab17‚ÍfilopodiaŒ`¬‚ð’Ê‚µ‚ÄAŽ÷ó“Ë‹N‚âƒXƒpƒCƒ“‚ÌŒ`¬‚ÉŠÖ—^‚·‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½BjiFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

12-7) Gao, J., Takeuchi, H., Zhang, Z., Fukuda, M. and Hirata, M. (2012) Phospholipase C-related but catalytically inactive protein (PRIP) modulates synaptosomal-associated protein 25 (SNAP-25) phosphorylation and exocytosis. J. Biol. Chem. 287, 10565-10578 [PubMed]

 

12-8) Takano, T., Tomomura, M., Yoshioka, N., Tsutsumi, K., Terasawa, Y., Saito, T., Kawano, H., Kamiguchi, H., Fukuda, M. and Hisanaga, S. (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J. Neurosci. 32, 6587-6599 [PubMed]

 

12-9) Ishida, M., Ohbayashi, N., Maruta, Y., Ebata, Y. and Fukuda, M. (2012) Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J. Cell Sci. 125, 5177-5187 [PubMed]iƒƒ‰ƒmƒTƒCƒg‚Å‚ÍA”÷¬ŠÇ‚ƃAƒNƒ`ƒ“üˆÛ‚ɉˆ‚Á‚ăƒ‰ƒmƒ\[ƒ€‚ª×–E–ŒŽü•Ó‚Ü‚Å—A‘—‚³‚ê‚Ü‚·B‚±‚ê‚Ü‚ÅA”÷¬ŠÇã‚Ì‹ts«—A‘—‚ƃAƒNƒ`ƒ“—A‘—‚ÌŽd‘g‚݂̉𖾂ɬŒ÷‚µ‚Ä‚¢‚Ü‚·‚ªA”÷¬ŠÇã‚̇s«—A‘—‚ÌŽd‘g‚Ý‚Í’·‚ç‚­–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍA’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rabƒtƒ@ƒ~ƒŠ[‚ð–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚·‚邱‚Æ‚É‚æ‚èARab1A‚Æ‚¢‚¤‚±‚ê‚Ü‚ÅGolgi-ERŠÔ‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚½RabƒAƒCƒ\ƒtƒH[ƒ€‚ª‡s«‚̃ƒ‰ƒmƒ\[ƒ€—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½BjmƒŠƒ“ƒNniIn this issue‚É‘I’èj

 

12-10) Ishibashi, K., Uemura, T., Waguri, S. and Fukuda, M. (2012) Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol. Biol. Cell 23, 3193-3202 [PubMed][USACO]iÅ‹ßAƒI[ƒgƒtƒ@ƒW[‚Æ•ª”姌ä‚ÌŠÖ˜A«‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚·‚ªAƒI[ƒgƒtƒ@ƒW[§ŒäˆöŽq‚É‚æ‚镪”å‚̧Œä‹@\‚Í—Ç‚­•ª‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAŠu—£–Œ‚ÌL’·‚É•K{‚̈öŽqAtg16L1‚ªRab33A‚ÆŒ‹‡‚·‚邱‚Æ‚É‚æ‚èAPC12×–E‚̃zƒ‹ƒ‚ƒ“è÷—±ã‚É‹ÇÝ‚µAƒI[ƒgƒtƒ@ƒW[Šˆ«‚Æ‚Í–³ŠÖŒW‚Ƀzƒ‹ƒ‚ƒ“•ª”å‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

12-11) Yasuda, T., Saegusa, C., Kamakura, S., Sumimoto, H. and Fukuda, M. (2012) Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Mol. Biol. Cell 23, 3229-3239 [PubMed][USACO]iRab27ƒGƒtƒFƒNƒ^[Slp2-a‚̓ƒ‰ƒmƒTƒCƒg‚Å‚Ì‹@”\‚ª—Ç‚­’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªAã”ç×–E‚Å‚à”­Œ»‚ªŒ©‚ç‚ê‚Ü‚·B¡‰ñŽ„’B‚ÍA‹É«‰»‚µ‚½MDCK×–E‚ÅSlp2-a‚̃^ƒ“ƒpƒNŽ¿—Ê‚ªŒ°’˜‚É㸂·‚邱‚ÆASlp2-aRab27A‚ªƒVƒOƒiƒ‹•ªŽqEpodocalyxin‚ð’¸’[•”×–E–Œ‚É—A‘—‚µAMAPKƒVƒOƒiƒ‹Œn‚ðŠˆ«‰»‚µ‚Ä–§’…Œ‹‡‚ðŒ`¬‚·‚éclaudin-2‚Ì”­Œ»‚ð—U“±‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

12-12) Matsui, T., Ohbayashi, N. and Fukuda, M. (2012) The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes. J. Biol. Chem. 287, 28619-28631 [PubMed]i’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rab‚ÍšM“û“®•¨‚É60Ží—Þ‹ß‚­‘¶Ý‚·‚邽‚ßA‘½‚­‚ÌRabƒAƒCƒ\ƒtƒH[ƒ€‚Ì‹@”\‚Í–¢‚¾\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍA‹@”\–¢’m‚ÌRab36‚Æ‚¢‚¤ƒAƒCƒ\ƒtƒH[ƒ€‚É’…–Ú‚µA‚»‚̃GƒtƒFƒNƒ^[•ªŽq‚Ì’Tõ‚ðs‚¢‚Ü‚µ‚½BRab36Œ‹‡•ªŽq‚Ì‘½‚­‚ÍRILP homology domain (RHD)‚Æ–½–¼‚µ‚½—̈æ‚ðŠÜ‚ñ‚Å‚¨‚èA‚±‚ÌRHD‚ÉGTPŒ^‚ÌRab36‚ªŒ‹‡‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B‚Ü‚½Aƒƒ‰ƒmƒTƒCƒg‚ð—p‚¢‚½‰ðÍ‚©‚çARab36‚ÍRILP‚ð‰î‚µ‚ă_ƒCƒjƒ“-ƒ_ƒCƒiƒNƒ`ƒ“ƒ‚[ƒ^[‚Æ•¡‡‘Ì‚ðŒ`¬‚µAƒƒ‰ƒmƒ\[ƒ€‚Ì”÷¬ŠÇ‹ts«—A‘—‚ð§Œä‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

12-13) Azouz, N. P., Matsui, T., Fukuda, M. and Sagi-Eisenberg, R. (2012) Decoding the regulation of mast cell exocytosis by networks of Rab GTPases. J. Immunol. 189, 2169-2180 [PubMed]

 

12-14) Zografou, S., Basagiannis, D., Papafotika, A., Shirakawa, R., Horiuchi, H., Auerbach, D., Fukuda, M. and Christoforidis, S. (2012) A complete Rab screening reveals novel insights in WeibelPalade body exocytosis. J. Cell Sci. 125, 4780-4790 [PubMed]iIn this issue‚É‘I’èj

 

12-15) Gálvez-Santisteban, M., Rodriguez-Fraticelli, A. E., Bryant, D. M., Vergarajauregui, S., Yasuda, T., Bañón-Rodríguez, I., Bernascone, I., Datta, A., Spivak, N., Young, K., Slim, C. L., Brakeman, P. R., Fukuda, M., Mostov, K. E. and Martín-Belmonte, F. (2012) Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nature Cell Biol. 14, 838-849 [PubMed]

 

12-16) Yoshida-Amano, Y., Hachiya, A., Ohuchi, A., Kobinger, G. P., Kitahara, T., Takema, Y. and Fukuda, M. (2012) Essential role of RAB27A in determining constitutive human skin color. PLoS One 7, e41160 [PubMed]i‰Ô‰¤Š”Ž®‰ïŽÐ‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅAlŽí‚É‚æ‚锧‚ÌF‚̈Ⴂ‚ÌŒ´ˆö‚ɂ‚¢‚Ä’²‚ׂ܂µ‚½B•l—R—ˆ‚̃ƒ‰ƒmƒTƒCƒg‚Å‚àA”’l—R—ˆ‚̃ƒ‰ƒmƒTƒCƒg‚Å‚àƒƒ‰ƒjƒ“‡¬y‘f‚Ì”­Œ»—Ê‚É‚Í·‚ª‚ ‚è‚Ü‚¹‚ñ‚ªAƒƒ‰ƒmƒ\[ƒ€‚Ì—A‘—‚É•K{‚̈öŽqRab27A‚Ì”­Œ»—Ê‚É—LˆÓ‚È·‚ª”F‚ß‚ç‚ê‚Ü‚µ‚½B‚·‚È‚í‚¿A•l—R—ˆ‚̃ƒ‰ƒmƒTƒCƒg‚Å‚ÍARab27A‚Ì”­Œ»‚ª‚‚­ƒƒ‰ƒmƒ\[ƒ€‚Ì—A‘—Šˆ«‚ª‚‚¢‚½‚ß‚ÉA‘½‚­‚̃ƒ‰ƒmƒ\[ƒ€‚ªƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ê‚é‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚·Bj

 

12-17) Nagahama, M., Umezaki, M., Tashiro, R., Oda, M., Kobayashi, K., Shibutani, M., Takagishi, T., Ishidoh, K., Fukuda, M. and Sakurai, J. (2012) Intracellular trafficking of Clostridium perfringens iota-toxin b. Infect. Immun. 80, 3410-3416 [PubMed]

 

12-18) Nakazawa, H., Sada, T., Toriyama, M., Tago, K., Sugiura, T., Fukuda, M. and Inagaki, N. (2012) Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth. J. Neurosci. 32, 12712-12725 [PubMed] (•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)mƒŠƒ“ƒNn

 

i2011”Nj

 

11-1) Tamura, K., Ohbayashi, N., Ishibashi, K. and Fukuda, M. (2011) Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes. J. Biol. Chem. 286, 7507-7521 [PubMed]iƒƒ‰ƒjƒ“‡¬y‘fƒ`ƒƒVƒi[ƒ[ŠÖ˜A’`”’Ž¿1(Tyrp1)‚Ì—A‘—‚É‚¨‚¯‚éVarp•ªŽq‚ÌŠeƒhƒƒCƒ“‚Ì‹@”\‚𖾂炩‚É‚·‚邽‚ßA\‘¢‹@”\‘ŠŠÖ‚ÉŠÖ‚·‚錤‹†‚ðs‚¢‚Ü‚µ‚½BTyrp1‚Ì—A‘—‚É‚ÍVarp•ªŽq‚ÌRab32/38Œ‹‡”\‹y‚ÑVAMP7Œ‹‡”\‚ª•K{‚Å‚ ‚邪AVPS9ƒhƒƒCƒ“‚ÌRab21-GEFŠˆ«‚Í•K—v‚È‚¢‚±‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½Bj

 

11-2) Itoh, T., Kanno, E., Uemura, T., Waguri, S. and Fukuda, M. (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol. 192, 839-853 [PubMed]i‹ß”NRab‚Ì•sŠˆ«‰»ˆöŽq‚Æ‚µ‚Ä’–Ú‚³‚ê‚Ä‚¢‚éTBC’`”’Ž¿‚ÍAƒqƒg‚âƒ}ƒEƒX‚É‚Í40Ží—ÞˆÈ㑶݂µ‚Ü‚·‚ªA‚»‚ê‚ç‚ÌÚׂȋ@”\‚Í‚Ù‚Æ‚ñ‚Ç•ª‚Á‚Ä‚¢‚Ü‚¹‚ñB–{˜_•¶‚Å‚ÍAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚É‹ÇÝ‚·‚éTBC’`”’Ž¿‚Ì–Ô—…“I‚ȉðÍ‚ðs‚¢AOATL1/TBC1D25‚ªLC3/Atg8ˆË‘¶“I‚ɃI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ɃŠƒNƒ‹[ƒg‚µAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚̬n‰ß’ö‚ÉŠÖ—^‚·‚邱‚Æ‚ð‰‚ß‚Ä“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

11-3) Matsuoka, H., Harada, K., Nakamura, J., Fukuda, M. and Inoue, M. (2011) Differential distribution of synaptotagmin-1, -4, -7, and -9 in rat adrenal chromaffin cells. Cell Tissue Res. 344, 41-50 [PubMed]

 

11-4) Beaumont, K. A., Hamilton, N. A., Moores, M. T., Brown, D. L., Ohbayashi, N., Cairncross, O., Cook, A. L., Smith, A. G., Misaki, R., Fukuda, M., Taguchi, T., Sturm, R. A. and Stow, J. L. (2011) The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking. Traffic 12, 627-643 [PubMed]

 

11-5) Sasakawa, N., Ohara-Imaizumi, M., Fukuda, M., Kabayama, H., Mikoshiba, K. and Kumakura, K. (2011) Dissociation of inositol polyphosphates from the C2B domain of synaptotagmin facilitates spontaneous release of catecholamines in adrenal chromaffin cells: A suggestive evidence of a fusion clamp by synaptotagmin. Neuropharmacology 60, 1364-1370 [PubMed]

 

11-6) Egami, Y., Fukuda, M. and Araki, N. (2011) Rab35 regulates phagosome formation through recruitment of ACAP2 in macrophages during FcƒÁR-mediated phagocytosis. J. Cell Sci. 124, 3557-3567 [PubMed] iIn this issue‚É‘I’èj

 

11-7) Vinet, A. F., Jananji, S., Turco, S. J., Fukuda, M. and Descoteaux, A. (2011) Exclusion of synaptotagmin V at the phagocytic cup by Leishmania donovani lipophosphoglycan results in decreased promastigote internalization. Microbiology 157, 2619-2628 [PubMed]

 

11-8) Matsui, T., Itoh, T. and Fukuda, M. (2011) Small GTPase Rab12 regulates constitutive degradation of transferrin receptor. Traffic 12, 1432-1443 [PubMed]i×–E–Œã‚ÌŽó—e‘Ì’`”’Ž¿‚̓ŠƒKƒ“ƒh‚ªŒ‹‡‚·‚é‚Æ×–E“à‚ÉŽæ‚èž‚Ü‚êAˆê•”‚ÌŽó—e‘̂̓ŠƒTƒCƒNƒŠƒ“ƒOŒo˜H‚É‚æ‚èÄ‚Ñ×–E–Œ‚Ö‚Æ—A‘—‚³‚ê‚Ü‚·B‚µ‚©‚µAƒgƒ‰ƒ“ƒXƒtƒFƒŠƒ“Žó—e‘̂ȂǃŠƒTƒCƒNƒŠƒ“ƒOŒo˜H‚ÅÄ—˜—p‚³‚ê‚éŽó—e‘Ì‚Ì•iŽ¿ŠÇ—‹@\‚Í‚±‚ê‚Ü‚Å‚Ù‚Æ‚ñ‚Ç–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍA‚±‚ê‚Ü‚Å‹@”\‚ª–¾‚ç‚©‚Å‚Í‚È‚©‚Á‚½Rab12‚ªƒgƒ‰ƒ“ƒXƒtƒFƒŠƒ“Žó—e‘Ì‚ðƒŠƒ\ƒ\[ƒ€‚É—A‘—‚µPí“I‚É•ª‰ð‚·‚邱‚Æ‚ðŒ©‚¢o‚µ‚Ü‚µ‚½BƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚烊ƒ\ƒ\[ƒ€‚É—A‘—‚·‚éŒo˜H‚Í‹³‰È‘‚É‚à‹LÚ‚³‚ê‚Ä‚¢‚È‚¢V‹KŒo˜H‚ÅA¡Œã‚ÌX‚È‚é”­“W‚ªŠú‘Ò‚³‚ê‚Ü‚·Bj

 

11-9) Fukuda, M., Kobayashi, H., Ishibashi, K. and Ohbayashi, N. (2011) Genome-wide investigation of the Rab binding activity of RUN domains: Development of a novel tool that specifically traps GTP-Rab35. Cell Struct. Funct. 36, 155-170 [PubMed]iƒqƒg‚̃Qƒmƒ€ã‚É‚ÍA’ᕪŽq—ÊG’`”’Ž¿Rab‚Æ‚ÌŠÖ˜A«‚ªŽ¦´‚³‚ê‚Ä‚¢‚é‹@”\–¢’m‚̃hƒƒCƒ“‚ª‘½”‘¶Ý‚µ‚Ä‚¢‚Ü‚·BRUNƒhƒƒCƒ“‚à‚»‚̈ê‚‚ÅARabƒGƒtƒFƒNƒ^[Œó•â‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚µ‚½‚ªA‚±‚ê‚Ü‚Å\•ª‚ÈŒŸØ‚Ís‚í‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAƒqƒg‚É‘¶Ý‚·‚é‘S‚Ä‚ÌRUNƒhƒƒCƒ“‚ð‘ÎÛ‚ÉRab‚ÌŒ‹‡Šˆ«‚ð–Ô—…“I‚É’²‚×AV‚½‚ÈRabŒ‹‡ƒhƒƒCƒ“‚Ì“¯’è‚ðs‚¢‚Ü‚µ‚½B‚³‚ç‚ÉA‚»‚ÌŒ‹‰Ê‚ð‚à‚Æ‚ÉGTP-Rab35‚ÌV‹Kƒgƒ‰ƒbƒp[‚ÌŠJ”­‚ɬŒ÷‚µ‚Ü‚µ‚½Bj

 

11-10) Zhang, L., Yu, K., Robert, K. W., DeBolt, K. M., Hong, N., Tao, J.-Q., Fukuda, M., Fisher, A. B. and Huang, S. (2011) Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L461-L477 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

11-11) Imai, A., Yoshie, S., Ishibashi, K., Haga-Tsujimura, M., Nashida, T., Shimomura, H. and Fukuda, M. (2011) EPI64 protein functions as a physiological GTPase-activating protein for Rab27 protein and regulates amylase release in rat parotid acinar cells. J. Biol. Chem. 286, 33854-33862 [PubMed]i“ú–{Ž•‰È‘åŠwE¡ˆä‚ ‚©‚Ë涂̃Oƒ‹[ƒv‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅAŽ¨‰º‘B‚©‚ç‚̃Aƒ~ƒ‰[ƒ[•ª”å‚É‚¨‚¯‚éRab27-GAPAEPI64‚Ì‹@”\‰ðÍ‚ðs‚¢‚Ü‚µ‚½B•ª”åŽhŒƒ‚Æ‹¤‚ÉEPI64‚ÌRab27-GAPŠˆ«‚ªã¸‚µARab27‚ª•sŠˆ«‰»‚³‚ê‚邱‚Æ‚ªƒAƒ~ƒ‰[ƒ[‚Ì•ª”å‚É•K{‚Å‚ ‚邱‚Æ‚ð‰‚ß‚Ä“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

11-12) Doi, H., Yoshida, K., Yasuda, T., Fukuda, M., Fukuda, Y., Morita, H., Ikeda, S.-I., Kato, R., Tsurusaki, Y., Miyake, N., Saitsu, H., Sakai, H., Miyatake, S., Shiina, M., Nukina, N., Koyano, S., Tsuji, S., Kuroiwa, Y. and Matsumoto, N. (2011) Exome sequencing reveals a homozygous SYT14 mutation in adult-onset autosomal recessive spinocerebellar ataxia with psychomotor retardation. Am. J. Hum. Genet. 89, 320-327 [PubMed]

 

11-13) Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T. and Fukuda, M. (2011) Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg125-16L2 complex. Autophagy 7, 1500-1513 [PubMed]iƒI[ƒgƒtƒ@ƒSƒ\[ƒ€i“Á‚ÉŠu—£–Œj‚ÌŒ`¬‚É•K{‚̈öŽqAAtg16L1‚Ì—ÞŽ—•ªŽq‚Æ‚µ‚Ä‚Ù“û“®•¨‚É‚Ì‚Ý•Û‘¶‚³‚ꂽAtg16L2‚𓯒肵‚Ü‚µ‚½BAtg16L2‚ÍAtg16L1‚Æ“¯—l‚ÉAtg12-5‚Æ•¡‡‘Ì‚ðŒ`¬‚·‚é‚É‚àŠÖ‚í‚炸AŠu—£–Œ‚É‚Í‹ÇÝ‚¹‚¸A‹Q‰ì‰ž“š«‚̃I[ƒgƒtƒ@ƒW[‚É‚ÍŠÖ—^‚µ‚È‚¢‚Æ‚¢‚¤ˆÓŠO‚ÈŽ–ŽÀ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½BAtg16L1‚ÆAtg16L2‚Ì”äŠr‰ðÍ‚©‚çAAtg16L1‚̃Aƒ~ƒmŽ_229-242‚̗̈æ‚ɉ½‚ç‚©‚Ì–¢“¯’è‚̈öŽq‚ªŒ‹‡‚µAŠu—£–Œ‚Ö‚ÌAtg16L1‚Ì‹ÇÝ‚ð§Œä‚µ‚Ä‚¢‚é‰Â”\«‚ªŽ¦´‚³‚ê‚Ü‚µ‚½Bj

 

i2010”Nj

 

10-1) Tsuboi, T., Kitaguchi, T., Karasawa, S., Fukuda, M. and Miyawaki, A. (2010) Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein. Mol. Biol. Cell 21, 87-94 [PubMed] iA Highlights from MBoC Selection‚É‘I’èj

 

10-2) Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C. F., Schauer, K., Hume, A. N., Freitas, R. P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M., Desnos, C., Seabra, M. C., Darchen, F., Amigorena, S., Moita, L. F. and Thery, C. (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biol. 12, 19-30 [PubMed]

 

10-3) Lico, D. T. P., Rosa, J. C., DeGiorgis, J. A., deVasconcelos, E. J. R., Casaletti, L., Tauhata, S. B. F., Baqui, M. M. A., Fukuda, M., Moreira, J. E. and Larson, R. E. (2010) A novel 65 kDa RNA-binding protein in squid presynaptic terminals. Neuroscience 166, 73-83 [PubMed]

 

10-4) Ko, H. W., Norman, R. X., Tran, J., Fuller, K. P., Fukuda, M. and Eggenschwiler, J. T. (2010) Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev. Cell 18, 237-247 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

10-5) Kanno, E., Ishibashi, K., Kobayashi, H., Matsui, T., Ohbayashi, N. and Fukuda, M. (2010) Comprehensive screening for novel Rab-binding proteins by GST pull-down assay using 60 different mammalian Rabs. Traffic 11, 491-507 [PubMed]iƒ}ƒEƒX‚âƒqƒg‚É‘¶Ý‚·‚é60Ží—Þ‚ÌRabƒAƒCƒ\ƒtƒH[ƒ€‚ɑ΂·‚éƒGƒtƒFƒNƒ^[•ªŽq‚ðGST pull-down–@‚ÆŽ¿—Ê•ªÍ‚ð‘g‚݇‚킹‚Ä–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚µ‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊARab‚Æ‚»‚Ì•sŠˆ«‰»ˆöŽqGAP‚ÌŠÔ‚ÉV‚µ‚¢ƒ^ƒCƒv‚ÌŒ‹‡—lŽ®‚ª‘¶Ý‚·‚邱‚ÆiRab‚ÌŒ‹‡‚É‚æ‚é“Á’è‚̃Iƒ‹ƒKƒlƒ‰‚Ö‚ÌGAP‚̃ŠƒNƒ‹[ƒgj‚𖾂炩‚É‚µ‚Ü‚µ‚½B‚Ü‚½A‘S‚Ä‚ÌRab‚ð‘ÎÛ‚É–Ô—…“I‚ȉðÍ‚ðs‚Á‚½¢ŠE‚ʼn‚߂Ă̘_•¶‚Å‚·IjiTraffic 2010-2011‚Ìmost cited paper‚̈ê‚‚ɑI‚΂ê‚Ü‚µ‚½Ij

 

10-6) Schlager, M. A., Kapitein, L. C., Grigoriev, I., Burzynski, G. M., Wulf, P. S., Keijzer, N., de Graaff, E., Fukuda, M., Shepherd, I. T., Akhmanova, A. and Hoogenraad, C. C. (2010) Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein-1 (BICDR-1) regulates neuritogenesis. EMBO J. 29, 1637-1651 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

10-7) Sato, M., Mori, Y., Matsui, T., Aoki, R., Oya, M., Yanagihara, Y., Fukuda, M. and Tsuboi, T. (2010) Role of the polybasic sequence in the Doc2ƒ¿ C2B domain in dense-core vesicle exocytosis in PC12 cells. J. Neurochem. 114, 171-181 [PubMed]i“Œ‘åE’؈ä‹MŽi涂̃Oƒ‹[ƒv‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅADoc2ƒ¿C2BƒhƒƒCƒ“‚Ìt-SNAREŒ‹‡ƒTƒCƒg‚Ì’²ß«•ª”å‚É‚¨‚¯‚é–ðŠ„‚ð–¾‚ç‚©‚É‚µ‚Ü‚µ‚½BƒVƒ“ƒ^ƒLƒVƒ“1a^SNAP-25ƒwƒeƒƒ_ƒCƒ}[‚ÌŒ‹‡”\‚ðŒ‡‘¹‚·‚éDoc2ƒ¿(KQ)•ÏˆÙ‘Ì‚ðPC12×–E‚É”­Œ»‚·‚é‚ÆA×–E–Œã‚Ì•ª”åè÷—±”‚ªŒ¸­‚·‚é‚Æ‚Æ‚à‚ÉA‚»‚ÌŠJŒû•úo”‚ªŒ°’˜‚ÉŒ¸­‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj

 

10-8) Ohbayashi, N., Mamishi, S., Ishibashi, K., Maruta, Y., Pourakbari, B., Tamizifar, B., Mohammadpour, M., Fukuda, M. and Parvaneh, N. (2010) Functional characterization of two Rab27A missense mutations found in Griscelli syndrome type 2. Pigment Cell Melanoma Res. 23, 365-374 [PubMed]iƒ^ƒCƒv2Œ^ƒOƒŠƒZƒŠÇŒóŒQ‚ÌV‚µ‚¢ƒ~ƒXƒZƒ“ƒX•ÏˆÙiRab27A(K22R)‹y‚Ñ(I44T)j‚̉ðÍ‚ðs‚¢‚Ü‚µ‚½BK22R•ÏˆÙ‘Ì‚ÍGTPŒ‹‡”\‚ðŒ‡‘¹‚µA×–EŽ¿’†‚É‘¶Ý‚·‚邱‚ÆAI44T•Ïˆâ‘̂̓ƒ‰ƒmƒ\[ƒ€ã‚É‘¶Ý‚·‚é‚É‚àŠÖ‚í‚炸ASlac2-a‚Æ‚ÌŒ‹‡‚Å‚«‚È‚¢‚½‚ß‚ÉAF‘fˆÙí‚ÌÇó‚ð’æ‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj

 

10-9) Tsutsumi, K., Takano, T., Endo, R., Fukuda, M., Ohshima, T., Tomomura, M. and Hisanaga, S. (2010) Phosphorylation of AATYK1 by Cdk5 suppresses its tyrosine phosphorylation. PLoS One 5, e10260 [PubMed]

 

10-10) Harada, K., Matsuoka, H., Nakamura, J., Fukuda, M. and Inoue, M. (2010) Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells. J. Neurochem. 114, 617-626 [PubMed]

 

10-11) Takano, T., Tsutsumi, K., Saito, T., Asada, A., Tomomura, M., Fukuda, M. and Hisanaga, S. (2010) AATYK1A phosphorylation by Cdk5 regulates the recycling endosome pathway. Genes Cells 15, 783-797 [PubMed]

 

i2009”Nj

 

09-1) Ishibashi, K., Kanno, E., Itoh, T. and Fukuda, M. (2009) Identification and characterization of a novel Tre-2/Bub2/Cdc16 (TBC) protein that possesses Rab3A-GAP activity. Genes Cells 14, 41-52 [PubMed]iTBCƒhƒƒCƒ“‚ÍRab-GAPƒhƒƒCƒ“‚Æl‚¦‚ç‚ê‚Ä‚¨‚èAƒqƒg‚̃Qƒmƒ€ã‚É‚Í40Ží—ÞˆÈã‚ÌTBC’`”’Ž¿‚ª‘¶Ý‚µ‚Ü‚·‚ªAŽÀÛ‚ÉRab-GAP‚Æ‚µ‚Ä“¯’肳‚ê‚Ä‚¢‚é‚à‚Ì‚Í‹Í‚©‚Å‚·B–{˜_•¶‚Å‚ÍAƒzƒ‹ƒ‚ƒ“è÷—±‚©‚ç‚ÌRab3A‚Ì—V—£‚ðŽw•W‚É‚µ‚ÄARab3A-GAPŠˆ«‚ð—L‚·‚éTBC’`”’Ž¿‚Ìin vivo‚ł̃XƒNƒŠ[ƒjƒ“ƒO–@‚ðŠm—§‚µ‚Ü‚µ‚½Bj

 

09-2) Imai, A., Fukuda, M., Yoshie, S., Nashida, T. and Shimomura, H. (2009) Redistribution of Rab27-specific effector Slac2-c, but not Slp4-a, after isoproterenol-stimulation in rat parotid acinar cells. Arch. Oral Biol. 54, 361-368 [PubMed]

 

09-3) Imai, A., Yoshie, S., Nashida, T., Fukuda, M. and Shimomura, H. (2009) Redistribution of small GTP-binding protein, Rab27B, in rat parotid acinar cells after stimulation with isoproterenol. Eur. J. Oral Sci. 117, 224-230 [PubMed]

 

09-4) Tambe, Y., Yamamoto, A., Isono, T., Chano, T., Fukuda, M. and Inoue, H. (2009) The drs tumor suppressor is involved in the maturation process of autophagy induced by low serum. Cancer Lett. 283, 74-83 [PubMed]

 

09-5) Tamura, K., Ohbayashi, N., Maruta, Y., Kanno, E., Itoh, T. and Fukuda, M. (2009) Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol. Biol. Cell 20, 2900-2908 [PubMed]iƒƒ‰ƒjƒ“‡¬y‘fƒ`ƒƒVƒi[ƒ[ŠÖ˜A’`”’Ž¿1(Tyrp1)‚Ì—A‘—‚ÉŠÖ—^‚·‚éV‹K’`”’Ž¿‚Æ‚µ‚ÄRab32/38ƒGƒtƒFƒNƒ^[Varp‚𓯒肵‚Ü‚µ‚½IVarp‚ðŒ‡‘¹‚·‚郃‰ƒmƒTƒCƒg‚ł̓ƒ‰ƒmƒ\[ƒ€‚ÉTyrp1‚ª³‚µ‚­—A‘—‚³‚ꂸA×–E“à‚̃ƒ‰ƒjƒ“F‘f—Ê‚ªŒ¸­‚·‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½jmƒŠƒ“ƒNn

 

09-6) Arimura, N., Kimura, T., Nakamuta, S., Taya, S., Funahashi, Y., Hattori, A., Shimada, A., Ménager, C., Kawabata, S., Fujii, K., Iwamatsu, A., Segal, R. A., Fukuda, M. and Kaibuchi, K. (2009) Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16, 675-686 [PubMed]

 

09-7) Maekawa, F., Tsuboi, T., Fukuda, M. and Pellerin, L. (2009) Regulation of the intracellular distribution, cell surface expression, and protein levels of AMPA receptor GluR2 subunits by the monocarboxylate transporter MCT2 in neuronal cells. J. Neurochem. 109, 1767-1778 [PubMed]

 

09-8) Terabayashi, T., Funato, Y., Fukuda, M. and Miki, H. (2009) A coated vesicle-associated kinase of 104 kDa (CVAK104) induces lysosomal degradation of frizzled 5 (Fzd5). J. Biol. Chem. 284, 26716-26724 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

09-9) Vinet, A. F., Fukuda, M., Turco, S. J. and Descoteaux, A. (2009) The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of Synaptotagmin V. PLoS Pathog. 5, e1000628 [PubMed]

 

09-10) Miyakawa, K., Ryo, A., Murakami, T., Ohba, K., Yamaoka, S., Fukuda, M., Guatelli, J. and Yamamoto, N. (2009) BCA2/Rabring7 promotes tetherin-dependent HIV-1 restriction. PLoS Pathog. 5, e1000700 [PubMed]

 

i2008”Nj

 

08-1) Gauthier, B. R., Duhamel, D. L., Iezzi, M., Theander, S., Saltel, F., Fukuda, M., Wehrle-Haller, B. and Wollheim, C. B. (2008) Synaptotagmin VII splice variants ƒ¿, ƒÀ, and ƒÂ are expressed in pancreatic ƒÀ-cells and regulate insulin exocytosis. FASEB J. 22, 194-206 [PubMed]

 

08-2) Mori, Y., Higuchi, M., Hirabayashi, Y., Fukuda, M. and Gotoh, Y. (2008) JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J. 27, 76-87 [PubMed]

 

08-3) Kanno, E. and Fukuda, M. (2008) Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells. J. Neurosci. Res. 86, 1036-1043 [PubMed]iJNRŽ‚Ì•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½IƒVƒiƒvƒgƒ^ƒOƒ~ƒ“I•ªŽq‚Ì—A‘—‚É‚¨‚¯‚éO“œ½Cü‚̈Ӌ`‚ð‰ðÍ‚µ‚Ü‚µ‚½Bj

 

08-4) Sano, H., Roach, W. G., Peck, G. R., Fukuda, M. and Lienhard, G. E. (2008) Rab10 in insulin-stimulated GLUT4 translocation. Biochem. J. 411, 89-95 [PubMed]

 

08-5) Holt, O., Kanno, E., Bossi, G., Booth, S., Daniele, T., Santoro, A., Arico, M., Saegusa, C., Fukuda, M. and Griffiths, G. M. (2008) Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 9, 446-457 [PubMed]i×–EŠQ«T×–E‚É”­Œ»‚·‚éRab27AƒGƒtƒFƒNƒ^[‚Æ‚µ‚ÄSlp2-a‚𓯒肵ASlp2-a‚ª–ƉuƒVƒiƒvƒX‚ÉWÏ‚·‚邱‚Æ‚ð“Ë‚«Ž~‚ß‚Ü‚µ‚½Bj

 

08-6) Frittoli, E., Palamidessi, A., Pizzigoni, A., Lanzetti, L., Garrè, M., Troglio, F., Troilo, A., Fukuda, M., Di Fiore, P. P., Scita, G. and Confalonieri, S. (2008) The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6 dependent pathway. Mol. Biol. Cell 19, 1304-1316 [PubMed]

 

08-7) Fujibayashi, A., Taguchi, T., Misaki, R., Ohtani, M., Dohmae, N., Takio, K., Yamada, M., Gu, J., Yamakami, M., Fukuda, M., Waguri, S., Uchiyama, Y., Yoshimori, T. and Sekiguchi, K. (2008) Human RME-8 is involved in membrane trafficking through early endosomes. Cell Struct. Funct. 33, 35-50 [PubMed]

 

08-8) Fukuda, M., Kanno, E., Ishibashi, K. and Itoh, T. (2008) Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7, 1031-1042 [PubMed]iRab1`Rab30‚̃GƒtƒFƒNƒ^[•ªŽq‚ðRab two-hybrid panel‚ð—p‚¢‚Ä–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚µ‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊARab‚ƃGƒtƒFƒNƒ^[•ªŽq‚̑ΉžŠÖŒW‚͈ȑOl‚¦‚ç‚ê‚Ä‚¢‚½ˆÈã‚É•¡ŽG‚Å‚ ‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½BƒGƒtƒFƒNƒ^[•ªŽq‚ÌRabŒ‹‡“ÁˆÙ«‚ðÚׂɒ²‚ׂ½‰‚߂Ă̘_•¶‚Å‚·Ij

 

08-9) Martin, D., Allagnat, F., Chaffard, G., Caille, D., Fukuda, M., Regazzi, R., Abderrahmani, A., Waeber, G., Meda, P., Maechler, P. and Haefliger, J.-A. (2008) Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells. Diabetologia 51, 1429-1439 [PubMed]

 

08-10) Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T. and Yoshimori, T. (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092-2100 [PubMed]iFaculty of 1000‚ÌMust read paper‚Æ‚µ‚Ä‘I’èj

 

08-11) Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T. and Fukuda, M. (2008) Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19, 2916-2925 [PubMed]iRab‚Ì–Ô—…“I‰ð̓c[ƒ‹‚ð—p‚¢‚ÄAƒI[ƒgƒtƒ@ƒW[i“Á‚ÉŠu—£–ŒL’·j‚É•K{‚̈öŽqAtg16L‚ªRab33B‚̃GƒtƒFƒNƒ^[•ªŽq‚Æ‚µ‚Ä‹@”\‚·‚é‰Â”\«‚ð‰‚ß‚Ä–¾‚ç‚©‚É‚µ‚Ü‚µ‚½Bƒ_ƒCƒiƒ~ƒbƒN‚È–Œ—A‘—‚𔺂¤ƒI[ƒgƒtƒ@ƒW[‚Æ–Œ—A‘—‚̧ŒäˆöŽq‚Å‚ ‚éRab‚Æ‚ª’¼ÚŒ‹‚т‚¢‚½‰‚߂Ă̘_•¶‚Å‚·IjiFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

08-12) Saegusa, C., Kanno, E., Itohara, S. and Fukuda, M. (2008) Expression of Rab27B-binding protein Slp1 in pancreatic acinar cells and its involvement in amylase secretion. Arch. Biochem. Biophys. 475, 87-92 [PubMed]iRab27ƒGƒtƒFƒNƒ^[Slp1‚ÍAäX‘Ÿ‚ÌŠO•ª”åiacinarj×–E‚ÉÅ‚à–L•x‚É”­Œ»‚µ‚Ä‚¨‚èASlp1ƒmƒbƒNƒAƒEƒgƒ}ƒEƒX‚Å‚ÍâHŽž‚ÉŒ©‚ç‚ê‚éƒAƒ~ƒ‰[ƒ[‚Ì•ª”傪’ቺ‚µ‚Ä‚¢‚邱‚Æ‚ª–¾‚ç‚©‚É‚È‚è‚Ü‚µ‚½Bj

 

08-13) Patino-Lopez, G., Dong, X., Ben-Aissa, K., Bernot, K. M., Itoh, T., Fukuda, M., Kruhlak, M. J., Samelson, L. E. and Shaw, S. (2008) Rab35 and its GAP EPI64C in T cells regulate receptor recycling and immunological synapse formation. J. Biol. Chem. 283, 18323-18330 [PubMed]

 

08-14) Kukimoto-Niino, M., Sakamoto, A., Kanno, E., Hanawa-Suetsugu, K., Terada, T., Shirouzu, M., Fukuda, M. and Yokoyama, S. (2008) Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. Structure 16, 1478-1490 [PubMed]i—Œ¤E‰¡ŽR–ΔV涂̃Oƒ‹[ƒv‚Æ‚Ì‹¤“¯Œ¤‹†‚ÅARab27B-Slac2-a-SHD‚ÌXüŒ‹»\‘¢‚ðŒˆ’è‚µ‚Ü‚µ‚½BSlac2-a‚ÌSHD‚ªRab27‚Ì‚Ý‚ð“ÁˆÙ“I‚É”FŽ¯‚·‚é‹@\‚ª‰ð–¾‚³‚ꂽ‚¾‚¯‚Å‚È‚­AGriscelliÇŒóŒQŠ³ŽÒ‚ÉŒ©‚ç‚ê‚é•ÏˆÙ‚Å‚ÍRab27-Slac2-a‚ÌŒ‹‡‚ª‘¹‚È‚í‚ê‚邱‚Æ‚ª\‘¢Šw“I‚É‚à— •t‚¯‚ç‚ê‚Ü‚µ‚½BjmƒŠƒ“ƒNniFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

08-15) Herrero-Turrión, M. J., Calafat, J., Janssen, H., Fukuda, M. and Mollinedo, F. (2008) Rab27a regulates exocytosis of tertiary and specific granules in human neutrophils. J. Immunol. 181, 3793-3803 [PubMed]

 

08-16) Kesari, A., Fukuda, M., Knoblach, S., Bashir, R., Nader, G. A., Rao, D., Nagaraju, K. and Hoffman, E. P. (2008) Dysferlin-deficiency shows compensatory induction of Rab27A/Slp2a that may contribute to inflammatory onset. Am. J. Pathol. 173, 1476-1487 [PubMed]

 

08-17) Vinet, A. F., Fukuda, M. and Descoteaux, A. (2008) The exocytosis regulator synaptotagmin V controls phagocytosis in macrophages. J. Immunol. 181, 5289-5295 [PubMed]

 

08-18) Yu, E., Kanno, E., Choi, S., Sugimori, M., Moreira, J. E., Llinás, R. R. and Fukuda, M. (2008) Role of Rab27 in synaptic transmission at the squid giant synapse. Proc. Natl. Acad. Sci. USA 105, 16003-16008 [PubMed]iRab27‚Í“à•ª”å×–EAŠO•ª”å×–EA–Ɖu×–E‚È‚Ç‚Ì—lX‚È•ª”医ۂɊ֗^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA_Œo×–E‚̃VƒiƒvƒX¬–E—A‘—‚É‚¨‚¯‚é–ðŠ„‚Í‚±‚ê‚Ü‚Å–¾‚ç‚©‚Å‚Í‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B–{˜_•¶‚Å‚ÍARab27‚ªü’Ž‚©‚çƒqƒg‚Ü‚Åi‰»“I‚É•Û‘¶‚³‚ê‚Ä‚¢‚邱‚Æ‚É’…–Ú‚µAƒ„ƒŠƒCƒJ‚Ì‹‘厲õ‚ð—p‚¢‚ăŠƒTƒCƒNƒŠƒ“ƒO¬–E‚Ìactive zone‚Ö‚Ì—A‘—‹y‚уhƒbƒLƒ“ƒO‰ß’ö‚ÉŠÖ—^‚·‚邱‚Æ‚ð‰‚ß‚Ä–¾‚ç‚©‚É‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

i2007”Nj

 

07-1) Tsuboi, T., Kanno, E. and Fukuda, M. (2007) The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cells. J. Neurochem. 100, 770-779 [PubMed]

 

07-2) Kishida, S., Hamao, K., Inoue, M., Hasegawa, M., Matsuura, Y., Mikoshiba, K., Fukuda, M. and Kikuchi, A. (2007) Dvl regulates endo- and exocytotic processes through binding to synaptotagmin. Genes Cells 12, 49-61 [PubMed]

 

07-3) Iwashita, S., Kobayashi, K., Kubo, Y., Hinohara, Y., Sezaki, M., Nakamura, K., Suzuki-Migishima, R., Yokoyama, M., Satoh, S., Fukuda, M., Ohba, M., Kato, C., Adachi, E. and Song, S.-Y. (2007) Versatile roles of R-Ras GAP in neurite formation of PC12 cells and embryonic vascular development. J. Biol. Chem. 282, 3413-3417 [PubMed]

 

07-4) Tsuboi, T. and Fukuda, M. (2007) Synaptotagmin VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells. Genes Cells 12, 511-519 [PubMed]

 

07-5) Hashii, M., Fukuda M., Nomura, H., Ito, N., Takahashi, H., Hattori, S., Mikoshiba, K., Noda, M. and Higuchi, Y. (2007) Up-regulation of ras-GAP genes is reversed by a MEK inhibitor and doxorubicin in v-Ki-ras transformed NIH/3T3 fibroblasts. Biochem. Biophys. Res. Commun. 356, 374-380 [PubMed]

 

07-6) Sano, H., Eguez, L., Teruel, M. N., Fukuda, M., Chuang, T. D., Chavez, J. A., Lienhard, G. E. and McGraw, T. E. (2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 5, 293-303 [PubMed]

 

07-7) Haberman, Y., Ziv, I., Gorzalczany, Y., Hirschberg, K., Mittleman, L., Fukuda, M. and Sagi-Eisenberg, R. (2007) Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 109, 3385-3392 [PubMed]

 

07-8) Musch, M. W., Arvans, D. L., Walsh-Reitz, M. M., Uchiyama, K., Fukuda, M. and Chang, E. B. (2007) Synaptotagmin I binds intestinal epithelial NHE3 and mediates cyclic AMP- and Ca2+-induced endocytosis by recruitment of AP2 and clathrin. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1549-1558 [PubMed]

 

07-9) Brunner, Y., Couté, Y., Iezzi, M., Foti, M., Fukuda, M., Hochstrasser, D., Wollheim, C. B. and Sanchez, J.-C. (2007) Proteomic analysis of insulin secretory granules. Mol. Cell. Proteomics 6, 1007-1017 [PubMed]

 

07-10) Takahashi, M., Murate, M., Fukuda, M., Sato, S. B., Ohta, A. and Kobayashi, T. (2007) Cholesterol controls lipid endocytosis through rab11. Mol. Biol. Cell 18, 2667-2677 [PubMed]iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

07-11) Misaki, R., Nakagawa, T., Fukuda, M., Taniguchi, N. and Taguchi, T. (2007) Spatial segregation of degradation- and recycling-trafficking pathways in COS-1 cells. Biochem. Biophys. Res. Commun. 360, 580-585 [PubMed]

 

07-12) Swiatecka-Urban, A., Talebian, L., Kanno, E., Moreau-Marquis, S., Coutermarsh, B., Hansen, K., Karlson, K. H., Barnaby, R., Cheney, R. E., Langford, G. M., Fukuda, M. and Stanton, B. A. (2007) Myosin Vb is required for trafficking of cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J. Biol. Chem. 282, 23725-23736 [PubMed]

 

i2006”Nj

 

06-1) Herrero-Turrión, M. J., Fukuda, M. and Mollinedo, F. (2006) Cloning and genomic characterization of sytdep, a new synaptotagmin XIV-related gene. Biochem. Biophys. Res. Commun. 340, 386-394 [PubMed]

 

06-2) Fukuda, M. (2006) Distinct developmental expression of synaptotagmin I and IX in the mouse brain. NeuroReport 17, 179-182 [PubMed]

 

06-3) Fukuda, M. (2006) Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: Hierarchy of Rab27A effectors. Biochem. Biophys. Res. Commun. 343, 666-674 [PubMed]

 

06-4) Saxena, S. K., Horiuchi, H. and Fukuda, M. (2006) Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism. Biochem. Biophys. Res. Commun. 344, 651-657 [PubMed]

 

06-5) Tsuboi, T. and Fukuda, M. (2006) The Slp4-a linker domain controls exocytosis through interaction with Munc18-1·syntaxin-1a complex. Mol. Biol. Cell 17, 2101-2112 [PubMed]

 

06-6) Tsuboi, T. and Fukuda, M. (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J. Cell Sci. 119, 2196-2203 [PubMed]

 

06-7) Saegusa, C., Tanaka, T., Tani, S., Itohara, S., Mikoshiba, K. and Fukuda, M. (2006) Decreased basal mucus secretion by Slp2-a-deficient gastric surface mucous cells. Genes Cells 11, 623-631 [PubMed]

 

06-8) Mahoney, T. R., Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z.-W., Fukuda, M. and Nonet, M. L. (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol. Biol. Cell 17, 2617-2625 [PubMed]

 

06-9) Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Bell, C., Nos, L., Fried, P., Pearce, D. A., Singh, S., Siderovski, D. P., Willard, F. S. and Fukuda, M. (2006) Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacol. 31, 1888-1899 [PubMed]

 

06-10) Itoh, T., Satoh, M., Kanno, E. and Fukuda, M. (2006) Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding activity. Genes Cells 11, 1023-1037 [PubMed]iRab60Ží—Þ‚ÆTBC’`”’Ž¿40Ží—Þ‚ÌŒ‹‡‚ð–Ô—…“I‚ɉðÍ‚·‚邱‚Æ‚É‚æ‚èRab-GAP‚Ì“¯’è‚ðŽŽ‚Ý‚Ü‚µ‚½Bj

 

06-11) Kapp-Barnea, Y., Ninio-Many, L., Hirschberg, K., Fukuda, M., Jeromin, A. and Sagi-Eisenberg, R. (2006) Neuronal calcium sensor-1 (NCS-1) and PI4KƒÀ stimulate ERK1/2 signaling by accelerating recycling through endocytic recycling compartment (ERC). Mol. Biol. Cell 17, 4130-4141 [PubMed]

 

06-12) Kondo, H., Shirakawa, R., Higashi, T., Kawato, M., Fukuda, M., Kita, T. and Horiuchi, H. (2006) Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity for Rab27 in platelets. J. Biol. Chem. 281, 28657-28665 [PubMed]

 

06-13) Itoh, T. and Fukuda, M. (2006) Identification of EPI64 as a GTPase-activating protein specific for Rab27A. J. Biol. Chem. 281, 31823-31831 [PubMed] iRab27A•sŠˆ«‰»y‘fRab27A-GAP‚𓯒èIjmƒŠƒ“ƒNn

 

06-14) Imai, A., Yoshie, S., Nashida, T., Shimomura, H. and Fukuda, M. (2006) Functional involvement of Noc2, a Rab27 effector, in rat parotid acinar cells. Arch. Biochem. Biophys. 455, 127-135 [PubMed]

 

i2005”Nj

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

05-1) Atiya-Nasagi, Y., Cohen, H., Medalia, O., Fukuda, M. and Sagi-Eisenberg, R. (2005) O-glycosylation is essential for intracellular targeting of synaptotagmins I and II in non-neuronal specialized secretory cells. J. Cell Sci. 118, 1363-1372 [PubMed]

 

05-2) Haberman, Y., Ziv, I., Gorzalczany, Y., Fukuda, M. and Sagi-Eisenberg, R. (2005) Classical protein kinase C(s) regulates targeting of synaptotagmin IX to the endocytic recycling compartment. J. Cell Sci. 118, 1641-1649 [PubMed]

 

05-3) Kuroda, T. S. and Fukuda, M. (2005) Functional analysis of Slac2-c/MyRIP as a linker protein between melanosomes and myosin VIIa. J. Biol. Chem. 280, 28015-28022 [PubMed]

 

05-4) Mîinea, C. P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen, J., Lane, W. S. and Lienhard, G. E. (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase activating protein domain. Biochem. J. 391, 87-93 [PubMed]

 

05-5) Roggero, C. M., Tomes, C. N., De Blas, G. A., Castillo, J., Michaut, M. A., Fukuda, M. and Mayorga, L. S. (2005) Protein Kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis. Dev. Biol. 285, 422-435 [PubMed]

 

05-6) Iezzi, M., Eliasson, L., Fukuda, M. and Wollheim, C. B. (2005) Adenovirus-mediated silencing of Synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett. 579, 5241-5246 [PubMed]

 

05-7) Saxena, S., Singh, M., Engisch, K., Fukuda, M. and Kaur, S. (2005) Rab proteins regulate epithelial sodium channel activity in colonic epithelial HT-29 cells. Biochem. Biophys. Res. Commun. 337, 1219-1223 [PubMed]

 

05-8) Swiatecka-Urban, A., Brown, A., Moreau-Marquis, S., Renuka, J., Coutermarsh, B., Barnaby, R., Karlson, K. H., Flotte, T. R., Fukuda, M., Langford, G. M. and Stanton, B. A. (2005) The short apical membrane half-life of rescued ĢF508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of ĢF508-CFTR in polarized human airway epithelial cells. J. Biol. Chem. 280, 36762-36772 [PubMed]

 

05-9) Fukuda, M., Imai, A., Nashida, T. and Shimomura, H. (2005) Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J. Biol. Chem. 280, 39175-39184 [PubMed]

 

05-10) Tsuboi, T. and Fukuda, M. (2005) The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J. Biol. Chem. 280, 39253-39259 [PubMed] i“à•ª”å×–E‚É‚¨‚¯‚éƒzƒ‹ƒ‚ƒ“è÷—±‚Ì×–E–Œ‚ւ̂‚Ȃ¬Ž~‚ß‚ÌV•ªŽq‹@\‚ð‰ð–¾IjmƒŠƒ“ƒNn

 

i2004”Nj

 

04-1) Sadakata, T., Mizoguchi, A., Sato, Y., Katoh-Semba, R., Fukuda, M., Mikoshiba, K. and Furuichi, T. (2004) The secretory granule-associated protein CAPS2 regulates neurotrophin release and cell survival. J. Neurosci. 24, 43-52 [PubMed]

 

04-2) Fukuda, M. and Kuroda, T. S. (2004) Missense mutations in the globular tail of myosin-Va in dilute mice partially impair binding of Slac2-a/melanophilin. J. Cell Sci. 117, 583-591 [PubMed]

 

04-3) Shirakawa, R., Higashi, T., Tabuchi, A., Yoshioka, A., Nishioka, H., Fukuda, M., Kita, T. and Horiuchi, H. (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J. Biol. Chem. 279, 10730-10737 [PubMed]

 

04-4) Rickman, C., Archer, D. A., Meunier, F. A., Craxton, M., Fukuda, M., Burgoyne, R. D. and Davletov, B. (2004) Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J. Biol. Chem. 279, 12574-12579 [PubMed]

 

04-5) Fukuda, M., Kanno, E. and Yamamoto, A. (2004) Rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A in PC12 cells. J. Biol. Chem. 279, 13065-13075 [PubMed]

 

04-6) Imai, A., Yoshie, S., Nashida, T., Shimomura, H. and Fukuda, M. (2004) The small GTPase Rab27B regulates amylase release from rat parotid acinar cells. J. Cell Sci. 117, 1945-1953 [PubMed]

 

04-7) Fukuda, M. and Itoh, T. (2004) Slac2-a/melanophilin contains multiple PEST-like sequences that are highly sensitive to proteolysis. J. Biol. Chem. 279, 22314-22321 [PubMed]

 

04-8) Fukuda, M. (2004) RNA interference-mediated silencing of synaptotagmin IX, but not synaptotagmin I, inhibits dense-core vesicle exocytosis in PC12 cells. Biochem. J. 380, 875-879 [PubMed]

 

04-9) Iezzi, M., Kouri, G., Fukuda, M. and Wollheim, C. B. (2004) Synaptotagmin V and IX isoforms control Ca2+-dependent insulin exocytosis. J. Cell Sci. 117, 3119-3127 [PubMed]

 

04-10) Zhang, Q., Fukuda, M., Van Bockstaele, E., Pascual, O. and Haydon, P. G. (2004) Synaptotagmin IV regulates glial glutamate release. Proc. Natl. Acad. Sci. USA 101, 9441-9446 [PubMed]

 

04-11) Fukuda, M. (2004) Alternative splicing in the first ƒ¿-helical region of the Rab-binding domain of Rim regulates Rab3A binding activity: Is Rim a Rab3 effector protein during evolution? Genes Cells 9, 831-842 [PubMed]

 

04-12) Fukuda, M. and Yamamoto, A. (2004) Effect of forskolin on synaptotagmin IV protein trafficking in PC12 cells. J. Biochem. 136, 245-253 [PubMed]

 

04-13) Kuroda, T. S. and Fukuda, M. (2004) Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nature Cell Biol. 6, 1195-1203 [PubMed] iRab27A, Slac2-a, Slp2-a‚ð‰î‚·‚郃‰ƒjƒ“F‘f—A‘—‚Ì•ªŽqƒƒJƒjƒYƒ€‚ð‰ð–¾‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn

 

04-14) Fukuda, M., Kanno, E., Satoh, M., Saegusa, C. and Yamamoto, A. (2004) Synaptotagmin VII is targeted to dense-core vesicles and regulates their Ca2+-dependent exocytosis in PC12 cells. J. Biol. Chem. 279, 52677-52684 [PubMed]

 

04-15) Llinás, R. R., Sugimori, M., Moran, K. A., Moreira, J. E. and Fukuda, M. (2004) Vesicular reuptake inhibition by a synaptotagmin I C2B domain antibody at the squid giant synapse. Proc. Natl. Acad. Sci. USA 101, 17855-17860 [PubMed]

 

i2003”Nj

 

03-1) Fukuda, M., Kanno, E., Ogata, Y., Saegusa, C., Kim, T., Peng Loh, Y. and Yamamoto, A. (2003) Nerve growth factor-dependent sorting of synaptotagmin IV protein to mature dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem. 278, 3220-3226 [PubMed]

 

03-2) Bahadoran, P., Busca, R., Chiaverini, C., Westbroek, W., Lambert, J., Bille, K., Valony, G., Fukuda, M., Naeyaert, J.-M., Ortonne, J.-P. and Ballotti, R. (2003) Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J. Biol. Chem. 278, 11386-11392 [PubMed]

 

03-3) Fukuda, M. (2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2: Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J. Biol. Chem. 278, 15373-15380 [PubMed] iRabŒ‹‡“ÁˆÙ«‚ð–Ô—…“I‚ɉðÍ‚·‚éƒVƒXƒeƒ€‚ð\’zIj

 

03-4) Fukuda, M. (2003) Slp4-a/granuphilin-a inhibits dense-core vesicle exocytosis through interaction with the GDP-bound form of Rab27A in PC12 cells. J. Biol. Chem. 278, 15390-15396 [PubMed]

 

03-5) Fukuda, M. (2003) Molecular cloning, expression, and characterization of a novel class of synaptotagmin (Syt XIV) conserved from Drosophila to humans. J. Biochem. 133, 641-649 [PubMed]

 

03-6) Fukuda, M. (2003) Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV. Biochem. Biophys. Res. Commun. 306, 64-71 [PubMed]

 

03-7) Kuroda, T. S., Ariga, H. and Fukuda, M. (2003) The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes. Mol. Cell. Biol. 23, 5245-5255 [PubMed]

 

03-8) Sato, M., Moroi, K., Nishiyama, M., Zhou, J., Usui, H., Kasuya, Y., Fukuda, M., Kohara, Y., Komuro, I. and Kimura, S. (2003) Characterization of a novel C. elegans RGS protein with a C2 domain: Evidence for direct association between C2 domain and Gaq subunit. Life Sci. 73, 917-932 [PubMed]

 

03-9) Haberman, Y., Grimberg, E., Fukuda, M. and Sagi-Eisenberg, R. (2003) Synaptotagmin IX, a possible linker between the perinuclear endocytic recycling compartment and the microtubules. J. Cell Sci. 116, 4307-4318 [PubMed]

 

03-10) Waselle, L., Coppola, T., Fukuda, M., Iezzi, M., El-Amraoui, A., Petit, C. and Regazzi, R. (2003) Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis. Mol. Biol. Cell 14, 4103-4113 [PubMed]

 

03-11) Yoo, S., Nguyen, M. P., Fukuda, M., Bittner, G. D. and Fishman, H. M. (2003) Plasmalemmal sealing of transected mammalian neurites is a gradual process mediated by Ca2+-regulated proteins. J. Neurosci. Res. 74, 541-551 [PubMed]

 

i2002”Nj

 

02-1) Fukuda, M., Kowalchyk, J. A., Zhang, X., Martin, T. F. J. and Mikoshiba, K. (2002) Synaptotagmin IX regulates Ca2+-dependent secretion in PC12 cells. J. Biol. Chem. 277, 4601-4604 [PubMed] iPC12×–E‚©‚ç‚̃zƒ‹ƒ‚ƒ“•ª”å‚ÉŠÖ—^‚·‚éV‚µ‚¢ƒVƒiƒvƒgƒ^ƒOƒ~ƒ“‚𓯒èIj

 

02-2) Kuroda, T. S., Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J. Biol. Chem. 277, 9212-9218 [PubMed] iSHD—̈悪’ᕪŽq—ÊG’`”’Ž¿Rab27AŒ‹‡ƒhƒƒCƒ“‚Å‚ ‚邱‚Æ‚ð”­Œ©Ij

 

02-3) Fukuda, M., Kuroda, T. S. and Mikoshiba, K. (2002) Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: Implications of a tripartite protein complex for melanosome transport. J. Biol. Chem. 277, 12432-12436 [PubMed] iRab27A·Slac2-a·myosin Va‚Ì•¡‡‘Ì‚É‚æ‚胃‰ƒmƒ\[ƒ€—A‘—‚ðs‚¤‚±‚Æ‚ðŒ©‚¢‚¾‚·BJBCŽ‚Ì•\Ž†‚É‚à‚È‚è‚Ü‚µ‚½B“–ŠYŒ¤‹†•ª–ì‚É‚¨‚¢‚Ä”íˆø—p—¦‚ÅãˆÊ1%‚É‚àƒ‰ƒ“ƒN‚³‚ê‚Ü‚µ‚½mƒŠƒ“ƒNnBjiFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj

 

02-4) Zhang, X., Kim-Miller, M. J., Fukuda, M., Kowalchyk, J. A. and Martin, T. F. J. (2002) Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599-611 [PubMed]

 

02-5) Kuroda, T. S., Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) Synaptotagmin-like protein 5: A novel Rab27A effector with C-terminal tandem C2 domains. Biochem. Biophys. Res. Commun. 293, 899-906 [PubMed]

 

02-6) Fukuda, M., Ogata, Y., Saegusa, C., Kanno, E. and Mikoshiba, K. (2002) Alternative splicing isoforms of synaptotagmin VII in the mouse, rat and human. Biochem. J. 365, 173-180 [PubMed]

 

02-7) Saegusa, C., Fukuda, M. and Mikoshiba, K. (2002) Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem. 277, 24499-24505 [PubMed]

 

02-8) Ibata, K., Hashikawa, T., Tsuboi, T., Terakawa, S., Liang, F., Mizutani, A., Fukuda, M. and Mikoshiba, K. (2002) Non-polarized distribution of synaptotagmin IV in neurons: Evidence that synaptotagmin IV is not a synaptic vesicle protein. Neurosci. Res. 43, 401-406 [PubMed]

 

02-9) Fukuda, M., Katayama, E. and Mikoshiba, K. (2002) The calcium-binding loops of the tandem C2 domains of synaptotagmin VII cooperatively mediate calcium-dependent oligomerization. J. Biol. Chem. 277, 29315-29320 [PubMed]

 

02-10) Fukuda, M. (2002) Vesicle-associated membrane protein-2/synaptobrevin binding to synaptotagmin I promotes O-glycosylation of synaptotagmin I. J. Biol. Chem. 277, 30351-30358 [PubMed]

 

02-11) Fukuda, M. (2002) The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: Comparison with the C2A domain of synaptotagmin I. Biochem. J. 366, 681-687 [PubMed]

 

02-12) Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y. and Kuroda, T. S. (2002) Slp4-a/granuphilin-a regulates dense-core vesicle exocytosis in PC12 cells. J. Biol. Chem. 277, 39673-39678 [PubMed]

 

02-13) Fukuda, M. (2002) Synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin is a critical determinant of GTP-dependent specific binding to Rab27A. J. Biol. Chem. 277, 40118-40124 [PubMed]

 

02-14) Fukuda, M. and Kuroda, T. S. (2002) Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J. Biol. Chem. 277, 43096-43103 [PubMed]

 

02-15) Peng W., Premkumar, A., Mossner, R., Fukuda, M., Lesch, K. P. and Simantov, R. (2002) Synaptotagmin I and IV are differentially regulated in the brain by the recreational drug 3,4-methylenedioxymethamphetamine (MDMA). Mol. Brain Res. 108, 94-101 [PubMed]

 

i2001”Nj

 

01-1) Fukuda, M. and Mikoshiba, K. (2001) Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII). Biochem. J. 354, 249-257 [PubMed]

 

01-2) Fukuda, M. and Mikoshiba, K. (2001) Synaptotagmin-like protein 1-3: A novel family of C-terminal-type tandem C2 proteins. Biochem. Biophys. Res. Commun. 281, 1226-1233 [PubMed] iƒVƒiƒvƒgƒ^ƒOƒ~ƒ“‚ÉŽ—‚Ä”ñ‚È‚éV‹K•ªŽq‚𓯒肵Slp‚Æ–½–¼j

 

01-3) Nalefski, E. A., Wisner, M. A., Chen, J. Z., Sprang, S. R., Fukuda, M., Mikoshiba, K. and Falke, J. J. (2001) C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. Biochemistry 40, 3089-3100 [PubMed]

 

01-4) Gut, A., Kiraly, C. E., Fukuda, M., Mikoshiba, K., Wollheim, C. B. and Lang, J. (2001) Expression and localisation of synaptotagmin isoforms in endocrine ƒÀ-cells: Their function in insulin exocytosis. J. Cell Sci. 114, 1709-1716 [PubMed]

 

01-5) Fukuda, M., Ibata, K. and Mikoshiba, K. (2001) A unique spacer domain of synaptotagmin IV is essential for Golgi localization. J. Neurochem. 77, 730-740 [PubMed]

 

01-6) Fukuda, M., Saegusa, C. and Mikoshiba, K. (2001) Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: Identification of the Slp homology domain. Biochem. Biophys. Res. Commun. 283, 513-519 [PubMed] iŒã‚ÉRab27‚ÌŒ‹‡ƒhƒƒCƒ“‚Æ‚µ‚Ä“¯’肳‚ê‚邱‚Æ‚É‚È‚éSHD—̈æ‚ðŒ©‚¢o‚·j

 

01-7) Fukuda, M., Saegusa, C., Kanno, E. and Mikoshiba, K. (2001) The C2A domain of double C2 protein ƒÁ contains a functional nuclear localization signal. J. Biol. Chem. 276, 24441-24444 [PubMed]

 

01-8) Fukuda, M. and Mikoshiba, K. (2001) Mechanism of the calcium-dependent multimerization of synaptotagmin VII mediated by its first and second C2 domains. J. Biol. Chem. 276, 27670-27676 [PubMed]

 

01-9) Michaut, M., De Blas, G., Tomes, C. N., Yunes, R., Fukuda, M. and Mayorga, L. S. (2001) Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. Dev. Biol. 235, 521-529 [PubMed]

 

01-10) Fukuda, M. and Mikoshiba, K. (2001) Tac2-N, an atypical C-type tandem C2 protein localized in the nucleus. FEBS Lett. 503, 217-218 [PubMed]

 

01-11) Fukuda, M., Kanno, E., Ogata, Y. and Mikoshiba, K. (2001) Mechanism of the SDS-resistant synaptotagmin clustering mediated by the cysteine cluster at the interface between the transmembrane and spacer domains. J. Biol. Chem. 276, 40319-40325 [PubMed]

 

01-12) Fukuda, M., Yamamoto, A. and Mikoshiba, K. (2001) Formation of crystalloid endoplasmic reticulum induced by expression of synaptotagmin lacking the conserved WHXL motif in the C terminus: Structural importance of the WHXL motif in the C2B domain. J. Biol. Chem. 276, 41112-41119 [PubMed]

 

01-13) Minagawa, T., Fukuda, M. and Mikoshiba, K. (2001) Distinct phosphoinositide binding specificity of the GAP1 family proteins: Characterization of the pleckstrin homology domains of mrasal and kiaa0538. Biochem. Biophys. Res. Commun. 288, 87-90 [PubMed]

 

01-14) Fukuda, M. and Mikoshiba, K. (2001) The N-terminal cysteine cluster is essential for membrane targeting of B/K protein. Biochem. J. 360, 441-448 [PubMed]

 

01-15) Kida, Y., Sakaguchi, M., Fukuda, M., Mikoshiba, K. and Mihara, K. (2001) Amino acid residues before the hydrophobic region which are critical for membrane translocation of the N-terminal domain of synaptotagmin II. FEBS Lett. 507, 341-345 [PubMed]

 

i2000”Nj

 

00-1) Ibata, K., Fukuda, M., Hamada, T., Kabayama, H. and Mikoshiba, K. (2000) Synaptotagmin IV is present at the Golgi and distal parts of neurites. J. Neurochem. 74, 518-526 [PubMed]

 

00-2) Mizutani, A., Fukuda, M., Ibata, K., Shiraishi, Y. and Mikoshiba, K. (2000) SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J. Biol. Chem. 275, 9823-9831 [PubMed]

 

00-3) Fukuda, M. and Mikoshiba K. (2000) Genomic structures of synaptotagmin II protein: Comparison of exon-intron organization of the synaptotagmin gene family. Biochem. Biophys. Res. Commun. 270, 528-532 [PubMed]

 

00-4) Berton, F., Cornet, V., Iborra, C., Garrido, J., Dargent, B., Fukuda, M., Seagar, M. and Marquèze, B. (2000) Synaptotagmin I and IV define distinct populations of neuronal transport vesicles. Eur. J. Neurosci. 12, 1294-1302 [PubMed]

 

00-5) Detrait, E., Eddleman, C. S., Yoo, S., Fukuda, M., Nguyen, M. P., Bittner, G. D. and Fishman, H. M. (2000) Axolemmal repair requires proteins that mediate synaptic vesicle fusion. J. Neurobiol. 44, 382-391 [PubMed]

 

00-6) Fukuda, M. and Mikoshiba, K. (2000) Distinct self-oligomerization activities of synaptotagmin family: Unique calcium-dependent oligomerization properties of synaptotagmin VII. J. Biol. Chem. 275, 28180-28185 [PubMed]

 

00-7) Kida, Y., Sakaguchi, M., Fukuda, M., Mikoshiba, K. and Mihara, K. (2000) Membrane topogenesis of a type I signal-anchor protein, mouse synaptotagmin II, on the endoplasmic reticulum. J. Cell Biol. 150, 719-730 [PubMed]

 

00-8) Fukuda, M. and Mikoshiba, K. (2000) Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family. J. Biochem. 128, 637-645 [PubMed]

 

00-9) Detrait, E. R., Yoo, S., Eddleman, C. S., Fukuda, M., Bittner, G. D. and Fishman, H. M. (2000) Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+ and synaptotagmin. J. Neurosci. Res. 62, 566-573 [PubMed]

 

00-10) Fukuda, M. and Mikoshiba, K. (2000) Doc2ƒÁ, a third isoform of double C2 protein, lacking calcium-dependent phospholipid binding activity. Biochem. Biophys. Res. Commun. 276, 626-632 [PubMed]

 

00-11) Fukuda, M., Kabayama, H. and Mikoshiba, K. (2000) Drosophila AD3 mutation of synaptotagmin impairs calcium-dependent self-oligomerization activity. FEBS Lett. 482, 269-272 [PubMed]

 

00-12) Fukuda, M. and Mikoshiba, K. (2000) Expression of synaptotagmin I or II promotes neurite outgrowth in PC12 cells. Neurosci. Lett. 295, 33-36 [PubMed]

 

00-13) Fukuda, M., Moreira, J. E., Liu, V., Sugimori, M., Mikoshiba, K. and Llinás, R. R. (2000) Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking. Proc. Natl. Acad. Sci. USA 97, 14715-14719 [PubMed]

 

i1999”Nj

 

99-1) Kabayama, H., Takei, K., Fukuda, M., Ibata, K. and Mikoshiba, K. (1999) functional involvement of synaptotagmin I/II C2A domain in neurite outgrowth of chick dorsal root ganglion neuron. Neuroscience 88, 999-1003 [PubMed]

 

99-2) Fukuda, M., Kanno, E. and Mikoshiba, K. (1999) Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X. J. Biol. Chem. 274, 31421-31427 [PubMed] i—Œ¤”]ƒZƒ“ƒ^[‚ɈڂÁ‚ÄAƒVƒiƒvƒgƒ^ƒOƒ~ƒ“ƒtƒ@ƒ~ƒŠ[‚ðƒ^[ƒQƒbƒg‚Æ‚µ‚½Œ¤‹†‚ðŠJŽnIj

 

99-3) Fukuda, M. and Mikoshiba, K. (1999) A novel alternatively spliced variant of synaptotagmin VI lacking a transmembrane domain: Implications for distinct functions of the two isoforms. J. Biol. Chem. 274, 31428-31434 [PubMed]

 

i1998”Nj

 

98-1) Sugimori, M., Tong, C.-K., Fukuda, M., Moreira, J. E., Kojima, T., Mikoshiba, K. and Llinás, R. (1998) Presynaptic injection of syntaxin-specific antibodies blocks transmission in the squid giant synapse. Neuroscience 86, 39-51 [PubMed]

 

98-2) Ibata, K., Fukuda, M. and Mikoshiba, K. (1998) Inositol 1,3,4,5-tetrakisphosphate binding activities of neuronal and nonneuronal synaptotagmins: Identification of conserved amino acid substitutions that abolish inositol 1,3,4,5-tetrakisphosphate binding to synaptotagmins III, V, and X. J. Biol. Chem. 273, 12267-12273 [PubMed]

 

i1997”Nj

 

97-1) Ohara-Imaizumi, M., Fukuda, M., Niinobe, M., Misonou, H., Ikeda, K., Murakami, T., Kawasaki, M., Mikoshiba, K. and Kumakura, K. (1997) Distinct roles of C2A and C2B domains of synaptotagmin in the regulation of exocytosis in adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 94, 287-291 [PubMed]

 

97-2) Mehrotra, B., Elliott, J. T., Chen, J., Olszewski, J. D., Profit, A. A., Chaudhary, A., Fukuda, M., Mikoshiba, K. and Prestwich, G. D. (1997) Selective photoaffinity labeling of the inositol polyphosphate binding C2B domains of synaptotagmins. J. Biol. Chem. 272, 4237-4244 [PubMed]

 

97-3) Fukuda, M., Kojima, T. and Mikoshiba, K. (1997) Regulation by bivalent cations of phospholipid binding to the C2A domain of synaptotagmin III. Biochem. J. 323, 421-425 [PubMed]

 

97-4) Mochida, S., Fukuda, M., Niinobe, M., Kobayashi, H. and Mikoshiba, K. (1997) Roles of synaptotagmin C2 domains in neurotransmitter secretion and inositol high-polyphosphate binding at mammalian cholinergic synapses. Neuroscience 77, 937-943 [PubMed]

 

97-5) Kojima, T., Fukuda, M., Watanabe, Y., Hamazato, F. and Mikoshiba, K. (1997) Characterization of the pleckstrin homology domain of Btk as an inositol polyphosphate and phosphoinositide binding domain. Biochem. Biophys. Res. Commun. 236, 333-339 [PubMed]

 

97-6) Lang, J., Fukuda, M., Zhang, H., Mikoshiba, K. and Wollheim, C. B. (1997) The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic ƒÀ-cells: Action of synaptotagmin at low micromolar calcium. EMBO J. 16, 5837-5846 [PubMed]

 

97-7) Taketo, M., Yokoyama, S., Fukuda, M., Mikoshiba, K. and Higashida, H. (1997) Inosiotl-1,3,4,5-tetrakisphosphate binding sites in control and ras-transformed NIH/3T3 fibroblasts. Biochem. Biophys. Res. Commun. 239, 349-352 [PubMed]

 

97-8) Mizutani, A., Fukuda, M., Niinobe, M. and Mikoshiba, K. (1997) Regulation of AP-2-synaptotagmin interaction by inositol high polyphosphates. Biochem. Biophys. Res. Commun. 240, 128-131 [PubMed]

 

i1996”Nj

 

96-1) Fukuda, M., Kojima, T. and Mikoshiba, K. (1996) Phospholipid composition dependence of Ca2+-dependent phospholipid binding to the C2A domain of synaptotagmin IV. J. Biol. Chem. 271, 8430-8434 [PubMed]

 

96-2) Fukuda, M. and Mikoshiba, K. (1996) Structure-function relationships of the mouse Gap1m: Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. J. Biol. Chem. 271, 18838-18842 [PubMed] iV‹K‚ÌIP4Œ‹‡’`”’Ž¿‚Æ‚µ‚ÄRab-GAP1m‚𓯒èIj

 

96-3) Kojima, T., Fukuda, M., Aruga, J. and Mikoshiba, K. (1996) Calcium-dependent phospholipid binding to the C2A domain of a ubiquitous form of double C2 protein (Doc2ƒÀ). J. Biochem. 120, 671-676 [PubMed]

 

96-4) Fukuda, M., Kojima, T., Kabayama, H. and Mikoshiba, K. (1996) Mutation of the pleckstrin homology domain of Bruton's tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303-30306 [PubMed] iV‹K‚ÌIP4Œ‹‡’`”’Ž¿‚Æ‚µ‚ăuƒ‹ƒgƒ“ƒ`ƒƒVƒ“ƒLƒi[ƒ[‚𓯒èIj

 

i1995”Nj

 

95-1) Fukuda, M., Kojima, T., Aruga, J., Niinobe, M. and Mikoshiba, K. (1995) Functional diversity of C2 domains of synaptotagmin family: Mutational analysis of inositol high polyphosphate binding domain. J. Biol. Chem. 270, 26523-26527 [PubMed] iŽv‚¢o‚Ì”ŽŽm˜_•¶‚̈ê‚ÂIIC2BƒhƒƒCƒ““à‚̃|ƒŠƒŠƒWƒ“‚Ì”z—ñ‚ÉIP4‚ªŒ‹‡‚·‚邱‚Æ‚ð”­Œ©Ij

 

95-2) Mikoshiba, K., Fukuda, M., Moreira, J. E., Lewis, F. M. T., Sugimori, M., Niinobe, M. and Llinás, R. (1995) Role of the C2A domain of synaptotagmin in transmitter release as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad. Sci. USA 92, 10703-10707 [PubMed]

 

95-3) Fukuda, M., Moreira, J. E., Lewis, F. M. T., Sugimori, M., Niinobe, M., Mikoshiba, K. and Llinás, R. (1995) Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad. Sci. USA 92, 10708-10712 [PubMed] iŽv‚¢o‚Ì”ŽŽm˜_•¶‚̈ê‚ÂIIC2BƒhƒƒCƒ“‚Ì‚Ý‚Ì‹@”\‚ð‘jŠQ‚·‚éR‘̂𓾂é‚Ì‚ª‘å•Ï‚Å‚µ‚½Bj

 

i1994”Nj

 

94-1) Akiyama, K., Fukuda, M., Kobayashi, N., Matsuoka, A. and Shikama, K. (1994) The pH-depededent swinging-out of the distal histidine residue in ferric hemoglobin of a midge larva (Tokunagayusurika akamusi). Biochim. Biophys. Acta 1208, 306-309 [PubMed]

 

94-2) Fukuda, M., Aruga, J., Niinobe, M., Aimoto, S. and Mikoshiba, K. (1994) Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin II. J. Biol. Chem. 269, 29206-29211 [PubMed] iŽv‚¢o‚Ì”ŽŽm˜_•¶‚̈ê‚ÂIIIP4Žó—e‘Ì‚Æ‚µ‚ăVƒiƒvƒX¬–E‚É‘¶Ý‚·‚éƒVƒiƒvƒgƒ^ƒOƒ~ƒ“II‚𓯒èIj

 

94-3) Niinobe, M., Yamaguchi, Y., Fukuda, M. and Mikoshiba, K. (1994) Synaptotagmin is an inositol polyphosphate binding protein: Isolation and characterizaion as an Ins 1,3,4,5-P4 binding protein. Biochem. Biophys. Res. Commun. 205, 1036-1042 [PubMed]

 

94-4) Llinás, R., Sugimori, M., Lang, E. J., Morita, M., Fukuda, M., Niinobe, M. and Mikoshiba, K. (1994) The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: A squid giant synapse study. Proc. Natl. Acad. Sci. USA 91, 12990-12993 [PubMed]

 

94-5) Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M. and Mikoshiba, K. (1994) A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem. 63, 1880-1890 [PubMed]

 

i1993”Nj

 

93-1) Fukuda, M., Takagi, T. and Shikama, K. (1993) Polymorphic hemoglobin from a midge larva (Tokunagayusurika akamusi) can be divided into two different types. Biochim. Biophys. Acta 1157, 185-191 [PubMed] iCŽm˜_•¶I’Þ‚è‰a‚Å’m‚ç‚ê‚Ä‚¢‚éƒAƒJƒ€ƒV‚̃wƒ‚ƒOƒƒrƒ“‚ÌŒ¤‹†‚Å‚·Bj

 

 

mƒgƒbƒv‚Ö–ß‚én

@

mƒz[ƒ€‚Ö–ß‚én