Œ¤‹†‹ÆÑ
uŒ´’˜˜_•¶v
i2025”Nj
25-1) Haga, K. and Fukuda, M. (2025) Comprehensive knockout analysis of the
RAB family small GTPases reveals an overlapping role of RAB2 and RAB14 in
autophagosome maturation. Autophagy 21, 21–36 [PubMed]iƒ_ƒCƒiƒ~ƒbƒN‚È–Œ‚Ì“®‘Ԃ𔺂¤ƒI[ƒgƒtƒ@ƒW[‚É‚ÍA‘½”‚̒ᕪŽq—ÊG’`”’Ž¿Rabi–ñ30Ží—Þj‚ÌŠÖ—^‚ª•ñ‚³‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA‚±‚ê‚ç‚ÌRab‚ªƒI[ƒgƒtƒ@ƒW[‚É•K{‚Ȃ̂©A‚ ‚é‚¢‚Í’P‚ÉŠÖ—^‚·‚邾‚¯‚Ȃ̂©‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAšM“û—Þ‚É‹¤’Ê‚µ‚Ä‘¶Ý‚·‚é‘S‚Ä‚ÌRab‚̃mƒbƒNƒAƒEƒg×–E‚ð—p‚¢‚ÄAƒI[ƒgƒtƒ@ƒW[‚É•K—v‚ÈRab‚Ì–Ô—…“I‚ȃXƒNƒŠ[ƒjƒ“ƒO‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊA4Ží—Þ‚ÌRabiRab1, Rab2,
Rab7, Rab14j‚ÌŒ‡‘¹‚É‚æ‚èƒI[ƒgƒtƒ@ƒW[Šˆ«‚ɈÙ킪”F‚ß‚ç‚êARab2‚ÆRab14‚ɂ‚¢‚Ă̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚̬n‰ß’ö‚Å‹¦’²“I‚É‹@”\‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj(•\ކ‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)
25-2) Hata, R., Sugawara, A. and Fukuda, M. (2025) Rab10 function in tubular
endosome formation requires the N-terminal K3 residue and is disrupted by
N-terminal tagging. J. Cell Sci. 138,
jcs.263649 [PubMed]i’ᕪŽq—ÊG’`”’Ž¿Rab‚Ì‹@”\‚â‹Ç݉ð͂ɂÍAŒuŒõ’`”’Ž¿‚Ȃǂ̃^ƒO‚ð•t‰Á‚µ‚½‚à‚Ì‚ª—ðŽj“I‚É—Ç‚—p‚¢‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µARab‚Ƃقړ¯‚¶ƒTƒCƒY‚̃^ƒO‚ð•t‰Á‚µ‚Ä‚à‹@”\“I‚É–â‘肪–³‚¢‚Ì‚©‚ÍAŽÀ‚Í‚±‚ê‚܂ŎÀŒ±“I‚ɂ͌ŸØ‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B‚»‚±‚ÅŽ„’B‚ÍAƒƒ‰ƒmƒ\[ƒ€—A‘—‚ÉŠÖ‚í‚éRab27‚ÆŠÇóƒGƒ“ƒhƒ\[ƒ€Œ`¬‚ÉŠÖ‚í‚éRab10‚Ì“ñŽí—Þ‚ÌRab‚ð‘ã•\‚ÉAƒ^ƒO‚̑傫‚³‚âŽí—Þ‚É‚æ‚é‰e‹¿‚ð‚±‚ê‚ç‚ÌŒ‡‘¹×–E‚ð—p‚¢‚ÄŒŸ“¢‚µ‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊARab27‚Ì‹@”\‚̓^ƒO‚É‚æ‚é‰e‹¿‚ðŽó‚¯‚Ü‚¹‚ñ‚Å‚µ‚½‚ªARab10‚Ì‹@”\‚̓yƒvƒ`ƒhƒ^ƒO‚̂悤‚Ȭ‚³‚È‚à‚Ì‚Å‚à’˜‚µ‚‘jŠQ‚³‚ê‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½B‚Ü‚½ARab10‚ÌGTPaseƒhƒƒCƒ“‚Ɋ܂܂ê‚È‚¢N––’[‘¤‚É‚ÍARab10‚ɂ̂ݕۑ¶‚³‚ꂽƒŠƒWƒ“ŽcŠî‚ª‘¶Ý‚µARab10‚Ì‹@”\‚É•K{‚Å‚ ‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½B‚±‚ÌƒŠƒWƒ“ŽcŠî‚Ì–ðŠ„‚ªN––’[ƒ^ƒO‚É‚æ‚è‰e‹¿‚ðŽó‚¯‚邯‘z’肳‚ê‚Ü‚·B¡‰ñ‚Ì”Œ©‚É‚æ‚èAN––’[ƒ^ƒO‚̉e‹¿‚ÍRab‚²‚ɈقȂ邱‚Æ‚ªŽ¦´‚³‚êA¡ŒãRab‚²‚ƂɃeƒCƒ‰[ƒƒCƒh‚ÌŒ¤‹†‚ª•K—v‚Å‚ ‚邱‚Æ‚ªŽ¦´‚³‚ê‚Ü‚µ‚½Bj
25-3) Nakashima, S. and Fukuda, M. (2025) Identification of Rab
GTPase-activating proteins required for tubular endosome formation. Traffic
26, e70007 [PubMed]iƒNƒ‰ƒXƒŠƒ“”ñˆË‘¶«ƒGƒ“ƒhƒTƒCƒg[ƒVƒX‚É‚æ‚Á‚ÄŽæ‚螂܂ꂽ•¨Ž¿‚ÌƒŠƒTƒCƒNƒ‹‚ÉŠÖ‚í‚éŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚É‚ÍARab22A‚ÌŠˆ«§ŒäiGTP-GDPƒTƒCƒNƒ‹j‚ªd—v‚Å‚·BˆÈ‘OŽ„’B‚ÍARab22A‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚ÄVps9d1‚Æ‚¢‚¤•ªŽq‚𓯒肵‚Ä‚¢‚Ü‚·‚ªA‚»‚Ì•sŠˆ«‰»ˆöŽq‚Í–¢‚¾•s–¾‚Å‚·B¡‰ñŽ„’B‚ÍARab‚Ì•sŠˆ«‰»ˆöŽq‚Æl‚¦‚ç‚ê‚Ä‚¢‚é–ñ40Ží—Þ‚ÌTBC’`”’Ž¿‚ð–Ô—…“I‚ɉðÍ‚·‚邱‚Æ‚ÅAŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚ÉŠÖ‚í‚é4Ží—Þ‚ÌRab-GAP‚𓯒肷‚邱‚Ƃɉ‚߂ĬŒ÷‚µA‚»‚Ì‚¤‚¿‚̈ê‚ÂTBC1D10B‚ªRab22A-GAPŒó•â‚Å‚ ‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
i2024”Nj
24-1) Sazki-Hagenbach, P., Kleeblatt, E., Fukuda, M., Ali, H. and Sagi-Eisenberg,
R. (2024) The underlying Rab network of MRGPRX2-stimulated secretion unveils
the impact of receptor trafficking on secretory granule biogenesis and
secretion. Cells
13, 93 [PubMed]
24-2) Nakamura, H. and Fukuda, M. (2024) Establishment of a synchronized
tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis
by promoting tyrosinase targeting to melanosomes. Sci. Rep. 14, 2529 [PubMed]iƒƒ‰ƒjƒ“‡¬Eƒ`ƒƒVƒi[ƒ[‚̓ƒ‰ƒmƒ\[ƒ€‚Ƃ͕ʌ‚ɇ¬‚³‚êAŒã‚©‚ç–¢¬nƒƒ‰ƒmƒ\[ƒ€‚Ö‚Æ—A‘—‚³‚ê‚Ü‚·Bƒ`ƒƒVƒi[ƒ[‚Í’èíó‘ԂŃSƒ‹ƒW‘Ì‚âƒGƒ“ƒhƒ\[ƒ€‚ȂǕ¡”‚̃Iƒ‹ƒKƒlƒ‰‚É‹ÇÝ‚·‚邽‚ßAƒ`ƒƒVƒi[ƒ[—A‘—‚̉ðÍ‚ÌáŠQ‚ƂȂÁ‚Ä‚¢‚Ü‚µ‚½B¡‰ñŽ„’B‚ÍAFM4‚Æ‚¢‚¤Ž©ŒÈƒIƒŠƒSƒ}[‰»ƒhƒƒCƒ“‚ð—p‚¢‚ÄAƒ`ƒƒVƒi[ƒ[‚Ì“¯’²—A‘—Œn‚ðŠm—§‚µ‚Ü‚µ‚½B‚±‚̃VƒXƒeƒ€‚ð—p‚¢‚ÄATyrp1‚ªŒø—¦“I‚ȃ`ƒƒVƒi[ƒ[‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
24-3) Omari, S., Roded, A., Eisenberg, M., Ali, H., Fukuda, M., Galli, S. J. and Sagi-Eisenberg, R. (2024) Mast cell secretory granule fusion with amphisomes coordinates their homotypic fusion and release of exosomes. Cell Rep. 43, 114482 [PubMed]
i2023”Nj
23-1) Shikanai, M., Ito, S., Nishimura, Y., Akagawa, R., Fukuda, M., Yuzaki,
M., Nabeshima, Y. and Kawauchi, T. (2023) Rab21 regulates caveolin-1-mediated
endocytic trafficking to promote immature neurite pruning. EMBO Rep. 24, e51475 [PubMed]
23-2) Nakashima, S., Matsui, T. and Fukuda, M. (2023) Vps9d1 regulates
tubular endosome formation through specific activation of Rab22A. J. Cell Sci.
136, jcs260522 [PubMed]iŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÍAƒNƒ‰ƒXƒŠƒ“”ñˆË‘¶«ƒGƒ“ƒhƒTƒCƒg[ƒVƒXiCIEj‚É‚æ‚Á‚ÄŽæ‚螂܂ꂽ•¨Ž¿‚ÌƒŠƒTƒCƒNƒ‹‚ÉŠÖ—^‚µ‚Ä‚¨‚èA‚»‚ÌŠÇó\‘¢‚ÌŒ`¬‚É‚ÍRab22A‚ªd—v‚Å‚ ‚邱‚Æ‚ðŽ„’B‚͈ȑO‚ÉŒ©o‚µ‚Ä‚¢‚Ü‚·B‚µ‚©‚µARab22A‚ª‚ǂ̂悤‚È‹@\‚ÅŠˆ«‰»‚³‚êACIEƒJ[ƒS‚ÌƒŠƒTƒCƒNƒ‹‚ð§Œä‚·‚é‚Ì‚©‚Í‚±‚ê‚܂őS‚•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAƒQƒmƒ€ã‚É‘¶Ý‚·‚éRabŠˆ«‰»ˆöŽqiGEFj‚ÌŒó•â‚ð–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚·‚邱‚Ƃɂæ‚èA‹@”\–¢’m‚ÌVps9d1‚Æ‚¢‚¤•ªŽq‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½B‚Ü‚½AVps9d1‚Íin vitro‚ÅRab22A‚ðŠˆ«‰»‚µA‚»‚ÌŒ‡‘¹‚É‚æ‚èŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚ª’˜‚µ‚‘¹‚È‚í‚ê‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bji2023 JCS Prize‚ÌÅIŒó•â‚É‘I’èj
23-3) Ishiyama, S., Hasegawa, T.,
Sugeno, N., Kobayashi, J., Yoshida, S., Miki, Y., Wakabayashi, K., Fukuda, M.,
Kawata, Y., Nakamura, T., Sato, K., Ezura, M., Kikuchi, A., Takeda, A. and Aoki,
M. (2023) Sortilin acts as an endocytic receptor for ƒ¿-synuclein
fibril. FASEB J. 37, e23017 [PubMed]
23-4) Komori, T., Kuwahara, T., Fujimoto, T., Sakurai, M., Koyama-Honda, I., Fukuda, M. and Iwatsubo, T. (2023) Phosphorylation of Rab29 at Ser185 regulates its localization and role in the lysosomal stress response in concert with LRRK2. J. Cell Sci. 136, jcs.261003 [PubMed]
23-5) Brauer, N., Maruta, Y., Strege,
K., Oschlies, I., Nakamura, H., Lisci, M., Böhm, S.,
Lehmberg, K., Brandhoff, L., Hennies, H. C., Ehl, S. R. Parvaneh, N., Kappler,
W., Fukuda, M., Griffiths, G. M., Niehues, T. and Ammann, S. K. (2023) Immunodeficiency
with susceptibility to lymphoma with complex genotype affecting energy
metabolism (FBP1, ACAD9) and vesicle trafficking (RAB27A).
Front. Immunol. 14, 1151166 [PubMed]iRab27A‚ɕψقðŽ‚Â–Æ‰u•s‘Sǂ̋@”\‰ðÍ‚ðƒhƒCƒcAƒCƒMƒŠƒXAƒCƒ‰ƒ“A“ú–{‚Ì‚SƒJ‘‚̑ۋ¤“¯Œ¤‹†‚Ås‚¢‚Ü‚µ‚½Ij
23-6) Noda, K., Lu, S.-L., Chen, S., Tokuda, K., Li, Y., Hao, F., Wada, Y., Sun-Wada, G.-H., Murakami, S., Fukuda, M., Itoh, T. and Noda, T. (2023) Characterization of Rab32- and Rab38-positive lysosome-related organelles in osteoclasts and macrophages. J. Biol. Chem. 299, 105191 [PubMed]
23-7) Matsui, T., Sakamaki, Y., Hiragi, S. and Fukuda, M. (2023) VAMP5 and
distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct. Funct. 48, 187–198 [PubMed]i‹É«‰»‚µ‚½ã”ç×–E‚Ì’¸’[–Œ‘¤‚Æ‘¤’ê–Œ‘¤‚©‚ç‚ÍAŒ`¬E—A‘—‹@\‚̈قȂé“ñŽí—ނ̃GƒNƒ\ƒ\[ƒ€‚ª•ª”傳‚ê‚Ä‚¢‚Ü‚·iEMBO Rep., 2021; Cell Rep., 2022jB¡‰ñŽ„’B‚ÍAƒGƒNƒ\ƒ\[ƒ€‚ÌŒ³‚ƂȂé“ào¬–E‚ðŠÜ‚Þ‘½–E‘Ì‚Æ×–E–Œ‚Ì—Z‡‹@\‚ÉÅ“_‚ð“–‚ÄA’¸’[–Œ‘¤‚Æ‘¤’ê–Œ‘¤‚ł͈قȂé‘g‚݇‚킹‚ÌSNARE•¡‡‘Ì‚ª‹@”\‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B‚·‚Ȃ킿A’¸’[–Œ‘¤‚Å‚ÍVAMP5-SNAP47-STX1‚݂̂ª‹@”\‚µA‘¤’ê–Œ‘¤‚Å‚ÍVAMP5-SNAP47-STX1‚ɉÁ‚¦‚ÄVAMP5-SNAP47-STX4‚ª“ÁˆÙ“I‚É‹@”\‚·‚邱‚Æ‚ð‰‚߂˾‚ç‚©‚É‚µ‚Ü‚µ‚½Bj
23-8) Tokuda, K., Lu, S.-L., Zhang, Z., Kato, Y., Chen, S., Noda, K., Hirose, K., Usami, Y., Uzawa, N., Murakami, S., Toyosawa, S., Fukuda, M., Sun-Wada, G.-H., Wada, Y. and Noda T. (2023) Rab32 and Rab38 maintain bone homeostasis by regulating intracellular traffic in osteoclasts. Cell Struct. Funct., 48, 223–239 [PubMed]
23-9) Rios, J. J., Li, Y., Paria, N., Bohlender, R. J., Huff, C., Rosenfeld,
J. A., Liu, P., Bi, W., Haga, K., Fukuda, M., Vashisth, S., Kaur, K., Chahrour,
M., Bober, M. B., Duker, A. L., Ladha, F. A., Hanchard, N. A., Atala, K.,
Khanshour, A. M., Smith, L., Wise, C. A. and Delgado, M. R. (2023) RAB1A haploinsufficiency phenocopies the
2p14-p15 microdeletion and is associated with impaired neuronal differentiation.
Am. J. Hum. Genet.
110, 2103-2111 [PubMed]
i2022”Nj
22-1) Oguchi, M. E., Homma, Y. and Fukuda, M. (2022) The N-terminal
Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells.
Small GTPases
13, 77-83 [PubMed]iŽ„’B‚͈ȑOAˆêŽŸ‘@–ÑiƒVƒŠƒAjŒ`¬‚Éd—v‚ȈöŽq‚̈ê‚‚Ƃµ‚ÄRab34‚𓯒肵A‚»‚̃†ƒj[ƒN‚ȃAƒ~ƒm––’[—̈悪ƒVƒŠƒAŒ`¬‚ÉŠÖ—^‚·‚邱‚Æ‚ð•ñ‚µ‚Ä‚¢‚Ü‚·iJ. Biol. Chem., 2020jB¡‰ñŽ„’B‚ÍARab34‚̃Aƒ~ƒm––’[—̈æ‚ÌÚׂȋ@”\‰ðÍ‚ðs‚¢Ai‰»“I‚ɕۑ¶‚³‚ꂽ16-18”Ô–Ú‚ÌŽO‚‚̃Aƒ~ƒmŽ_iLeu-Pro-Glnj‚ªƒVƒŠƒAŒ`¬‚Éd—v‚Å‚ ‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
22-2) Matsui, T., Sakamaki, Y., Nakashima, S. and Fukuda, M. (2022) Rab39 and
its effector UACA regulate basolateral exosome release from polarized
epithelial cells. Cell Rep. 39, 110875 [PubMed]i‹É«‰»‚µ‚½ã”ç×–E‚Ì’¸’[–Œ‘¤‚Æ‘¤’ê–Œ‘¤‚©‚ç‚Í’`”’Ž¿‘g¬‚̈قȂé“ñŽí—ނ̃GƒNƒ\ƒ\[ƒ€‚ª•ª”傳‚ê‚Ä‚¨‚èA‚»‚ÌŒ`¬‹@\‚ª‘S‚ˆÙ‚Ȃ邱‚Æ‚ðˆÈ‘O‚É•ñ‚µ‚Ä‚¢‚Ü‚·iEMBO Rep., 2021jB¡‰ñŽ„’B‚ÍAƒGƒNƒ\ƒ\[ƒ€‚ÌŒ³‚ƂȂé“ào¬–E‚ðŠÜ‚Þ‘½–E‘Ì‚Ì×–E–Œ‚Ö‚Ì—A‘—‚É‚àˆÙ‚È‚éƒZƒbƒg‚ÌRab•ªŽq‚ªŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B‚·‚Ȃ킿A’¸’[–ŒƒGƒNƒ\ƒ\[ƒ€‚Ì•ª”å‚ÍRab27‚ÆRab37‚É‚æ‚Á‚ÄA‘¤’ê–ŒƒGƒNƒ\ƒ\[ƒ€‚Ì•ª”å‚ÍRab39–UACA-BORC‚É‚æ‚Á‚ħŒä‚³‚ê‚邱‚Æ‚ð‰‚߂˾‚ç‚©‚É‚µ‚Ü‚µ‚½B‚Ü‚½Aƒp[ƒLƒ“ƒ\ƒ“•a‚ÌŒ´ˆö‚ƂȂéRab39B‚̃~ƒXƒZƒ“ƒX•ψقłàƒGƒNƒ\ƒ\[ƒ€‚Ì•ª”å”\‚̒ቺ‚ªŠÏŽ@‚³‚êA޾г”ǂƂ̊֘A«‚àŽ¦´‚³‚ê‚Ü‚µ‚½BjmƒŠƒ“ƒNn
22-3) Naß, J., Koerdt, S. N.,
Biesemann, A., Chehab, T., Yasuda, T., Fukuda, M., Martín-Belmonte,
F. and Gerke, V. (2022) Tip-end fusion of a rod-shaped secretory organelle. Cell. Mol. Life
Sci. 79, 344 [PubMed]
22-4) Hiragi, S., Matsui, T., Sakamaki, Y. and Fukuda, M. (2022) TBC1D18 is a
Rab5-GAP that coordinates endosome maturation together with Mon1. J. Cell Biol.
221, e202201114 [PubMed]iƒGƒ“ƒhƒTƒCƒg[ƒVƒX‚É‚æ‚Á‚Ä×–E“à‚ÉŽæ‚螂܂ꂽ•¨Ž¿‚ÍA‰ŠúƒGƒ“ƒhƒ\[ƒ€AŒãŠúƒGƒ“ƒhƒ\[ƒ€‚ðŒo‚ÄÅI“I‚ÉƒŠƒ\ƒ\[ƒ€‚Å•ª‰ð‚ðŽó‚¯‚éB‚±‚̃Gƒ“ƒhƒ\[ƒ€¬n‰ß’ö‚É‚ÍARab5‚©‚çRab7‚Ö‚Ì‘JˆÚ‚ª•s‰ÂŒ‡‚Æl‚¦‚ç‚ê‚Ä‚¢‚邪ARab5‚ª‚¢‚‚ǂ±‚ÅA‚ǂ̂悤‚È‹@\‚Å•sŠˆ«‰»‚³‚ê‚é‚©‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂Ȃ©‚Á‚½B¡‰ñAƒGƒ“ƒhƒ\[ƒ€¬n‚ð§Œä‚·‚éV‹KRab5‚Ì•sŠˆ«‰»ˆöŽq‚Æ‚µ‚ÄTBC1D18‚𓯒肷‚邱‚ƂɬŒ÷‚µARab5•sŠˆ«‰»‚Ìd—v«‚ðŠÜ‚ß‚½ƒGƒ“ƒhƒ\[ƒ€¬n‚ÉŠÖ‚·‚éV‚½‚ȃ‚ƒfƒ‹‚ð’ñ¥‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNni¶‰»Šw‰ï“Œ–kŽx•”‰ïE—DG˜_•¶Ü‚É‘I’èj
22-5) Maruta, Y. and Fukuda, M. (2022) Large Rab GTPase Rab44 regulates
microtubule-dependent retrograde melanosome transport in melanocytes. J. Biol. Chem.
298, 102508 [PubMed]iƒƒ‰ƒmƒTƒCƒg‚É‚¨‚¯‚郃‰ƒmƒ\[ƒ€‚Ì•ª•z‚Í×–EœŠiã‚̇s«—A‘—‚Æ‹ts«—A‘—‚̃oƒ‰ƒ“ƒX‚É‚æ‚Á‚ħŒä‚³‚ê‚Ä‚¢‚Ü‚·BŽ„’B‚Í‚±‚ê‚܂ŋts«—A‘—ƒ‚[ƒ^[iƒ_ƒCƒjƒ“j‚̃ƒ‰ƒmƒ\[ƒ€ã‚̃ŒƒZƒvƒ^[‚Æ‚µ‚ÄAƒƒ‰ƒmƒŒƒMƒ…ƒŠƒ“‚ÆRab36‚𓯒肵‚Ä‚¢‚Ü‚·‚ªA—¼ŽÒ‚ðŒ‡‘¹‚³‚¹‚Ä‚à‹ts«—A‘—‚ÍŠ®‘S‚ɂ͎~‚Ü‚ç‚È‚¢‚±‚Æ‚©‚çA‘æŽO‚̈öŽq‚Ì‘¶Ý‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚µ‚½B¡‰ñAƒƒ‰ƒmƒ\[ƒ€‚Ì‹ts«—A‘—‚ð§Œä‚·‚éÅŒã‚̈öŽq‚Æ‚µ‚Älarge Rab‚̈êŽíARab44‚𓯒肷‚邱‚ƂɬŒ÷‚µAƒJƒ‹ƒVƒEƒ€ƒCƒIƒ“‚É‚æ‚é§Œä‚â‚»‚Ì—A‘—‹@\‚ð‰ð–¾‚µ‚Ü‚µ‚½Bj
22-6) Nishizawa, A., Maruta, Y. and Fukuda, M. (2022) Rab32/38-dependent and
-independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells. Int. J. Mol. Sci.
23,
14144 [PubMed]i”|—{ƒƒ‰ƒmƒTƒCƒg‚ÍAƒƒ‰ƒjƒ“ŽY«”\‚ð•ÛŽ‚µ‚½‚܂ܒ·Šú”|—{‚ª¢“ï‚È‚½‚ßAŒ»ÝŽå—¬‚ƂȂÁ‚Ä‚¢‚éCRISPR/Cas9‚É‚æ‚éƒmƒbƒNƒAƒEƒgiKOj‰ð͂ɂ͕sŒü‚«‚Å‚·Bˆê•ûAƒƒ‰ƒm[ƒ}‚Í–³ŒÀ‘B‚ª‰Â”\‚È‚½‚ßAKOŠ”‚ÌŽ÷—§‚͉”\‚Å‚·‚ªAƒƒ‰ƒmƒTƒCƒg‚ƃƒ‰ƒm[ƒ}‚Ńƒ‰ƒmƒ\[ƒ€‚ÌŒ`¬E—A‘—‚ª“¯‚¶ƒƒJƒjƒYƒ€‚Ås‚í‚ê‚Ä‚¢‚é‚©‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñAB16-F1ƒƒ‰ƒm[ƒ}×–E‚ð—p‚¢‚½KO‰ðÍ‚ðs‚¢Aƒƒ‰ƒjƒ“‡¬‚⃃‰ƒmƒ\[ƒ€‚Ì—A‘—‚ÌŽd‘g‚Ý‚ÍB16-F1×–E‚Å‚à•Û‚½‚ê‚Ä‚¢‚Ü‚µ‚½‚ªAƒƒ‰ƒjƒ“‡¬y‘f‚̃ƒ‰ƒmƒ\[ƒ€‚Ö‚Ì—A‘—‚ÌŽd‘g‚݂̓ƒ‰ƒmƒTƒCƒg‚Ƃ͈قȂ邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½Bƒƒ‰ƒmƒTƒCƒg‚Å‚ÍABLOC-3ERab32/38EVarp‚ÌŒo˜H‚ªƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚Éd—v‚Å‚·‚ªAB16-F1×–E‚ɂ͂±‚ÌŒo˜H‚Ƃ͔ñˆË‘¶“I‚È‚à‚Ì‚ª‘¶Ý‚·‚邱‚Æ‚ð‰‚߂ē˂«Ž~‚߂܂µ‚½Bƒƒ‰ƒm[ƒ}×–E‚Í‚»‚ÌŽæ‚舵‚¢‚â‚·‚³‚©‚çA”ü”’Œ¤‹†‚Ȃǂŗǂ—p‚¢‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA¡‰ñ‚̬‰Ê‚É‚æ‚èAƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ð‘ÎÛ‚Æ‚µ‚½‰ðÍ‚ðs‚¤Û‚É‚ÍA’ˆÓ‚ð—v‚·‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½Bj
i2021”Nj
21-1) Urrutia, P. J., Bodaleo, F., Bórquez, D. A., Homma, Y., Rozes-Salvador, V., Villablanca, C., Conde, C., Fukuda, M. and González-Billault, C. (2021) Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a. J. Neurosci. 41, 1636-1649 [PubMed]
21-2) Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. and Fukuda, M. (2021) ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 [PubMed]iƒGƒNƒ\ƒ\[ƒ€‚Í—±Œa100 nm‘OŒã‚Ì×–EŠO¬–E‚̈êŽí‚ÅA‹ß”NV‚½‚È×–EŠÔƒRƒ~ƒ…ƒjƒP[ƒVƒ‡ƒ“‚ÌŽè’i‚Æ‚µ‚Ä’–Ú‚³‚ê‚Ä‚¢‚Ü‚·BÅ‹ßAƒTƒCƒY‚â‘g¬‚̈قȂéƒGƒNƒ\ƒ\[ƒ€‚Ì‘¶Ý‚ª•ñ‚³‚ê‚邿‚¤‚ɂȂÁ‚Ä‚«‚Ü‚µ‚½‚ªA‚»‚ÌwˆÙŽ¿«i‘½—l«jx‚ð¶‚Ýo‚·Žd‘g‚݂͖¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B–{Œ¤‹†‚Å‚ÍA“ñŽí—ނ̈قȂé×–E–Œi’¸’[–Œ‚Æ‘¤’ê–Œj‚ðŽ‚ÂMDCK×–E‚ð—p‚¢‚ÄAˆÙ‚È‚é×–E–Œ‚©‚ç•úo‚³‚ê‚é‘g¬‚̈قȂéƒGƒNƒ\ƒ\[ƒ€‚ÌŒ`¬‹@\‚̈Ⴂ‚ð‰ð–¾‚µ‚Ü‚µ‚½B‚·‚Ȃ킿A’¸’[–Œ‘¤‚̃GƒNƒ\ƒ\[ƒ€‚ÌŒ`¬‚É‚ÍALIX-Syntenin1–Syndecan1•¡‡‘Ì‚ªA‘¤’ê–Œ‘¤‚̃GƒNƒ\ƒ\[ƒ€‚ÌŒ`¬‚ɂ̓XƒtƒBƒ“ƒSƒ~ƒGƒŠƒi[ƒ[inSMase2jˆË‘¶“I‚ȃZƒ‰ƒ~ƒh‘ãŽÓ‚ª“Æ—§‚É‹@”\‚·‚邱‚Æ‚ð‰‚߂ē˂«Ž~‚߂܂µ‚½BjmƒŠƒ“ƒNn
21-3) Osaki, F., Matsui, T., Hiragi, S., Homma, Y. and Fukuda, M. (2021)
RBD11, a bioengineered Rab11-binding module for visualizing and analyzing
endogenous Rab11. J. Cell Sci. 134,
jcs257311 [PubMed]iRab‚Ì‹@”\‰ðÍ‚ðs‚¤Žè–@‚̈ê‚‚Ƃµ‚ÄARabƒGƒtƒFƒNƒ^[ƒhƒƒCƒ“‚̉ß蔌»‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA‘½‚‚̃GƒtƒFƒNƒ^[ƒhƒƒCƒ“‚Í•¡”‚ÌRab‚ÆŒ‹‡‚µ‚Ä‚µ‚Ü‚¤‚½‚ßA“ÁˆÙ«‚ª’á‚¢‚Æ‚¢‚¤–â‘è“_‚ª‚ ‚è‚Ü‚µ‚½B¡‰ñŽ„’B‚ÍAƒoƒCƒIƒGƒ“ƒWƒjƒAƒŠƒ“ƒO‚ð—p‚¢‚ÄŠˆ«Œ^‚ÌRab11‚݂̂Ɍ‹‡‚·‚éV‹Kƒc[ƒ‹‚Æ‚µ‚ÄAwRBD11x‚ðŠJ”‚·‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BRBD11i‚ ‚é‚¢‚ÍRBD11‚ðƒ^ƒ“ƒfƒ€‚ɂ‚Ȃ¢‚¾2~RBD11j‚ð×–E‚É”Œ»‚·‚邱‚Ƃɂæ‚èA×–E‚ª¶‚«‚½‚܂܂Ìó‘Ô‚Å“àÝ«‚ÌRab11‚Ì‹ÇÝ‚ð‰ÂŽ‹‰»‚µ‚½‚èARab11‚Ì‹@”\‚ð‘jŠQ‚·‚邱‚Æ‚ª‰Â”\‚ɂȂè‚Ü‚µ‚½Bj
21-4) Homma, Y. and Fukuda, M. (2021) Knockout analysis of Rab6 effector
proteins revealed the role of VPS52 in the secretory pathway. Biochem. Biphys.
Res. Common. 561, 151-157
[PubMed]iRab6-KO×–E‚ł͉—n«’`”’Ž¿‚Ì•ª”å‘jŠQiƒŠƒ\ƒ\[ƒ€‚ł̒~Ïj‚âŠî’ê–Œ‚ÌŒ`¬•s‘S‚ÌÇ󂪊ώ@‚³‚ê‚Ü‚·‚ªARab6‚ª‚ǂ̂悤‚È‹@\‚Å•ª”åŒo˜H‚ð§Œä‚µ‚Ä‚¢‚é‚Ì‚©‚Í–¢‚¾–¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍA6Ží—Þ‚ÌRab6ƒGƒNƒtƒFƒNƒ^[Œó•╪Žq‚ÌKO×–EŠ”‚ðŽ÷—§‚µA‚»‚Ì•\Œ»Œ^‚̉ðÍ‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊAVPS52-KO×–E‚݂̂ª‰Â—n«’`”’Ž¿‚Ì•ª”å‘jŠQ‚ÌÇó‚ðŽ¦‚µ‚Ü‚µ‚½‚ªA‘S‚Ä‚ÌKO×–E‚ÅŠî’ê–Œ‚ª³í‚ÉŒ`¬‚³‚ê‚Ä‚¢‚Ü‚µ‚½B‚±‚Ì‚±‚Æ‚©‚çARab6‚Í•ª”åŒo˜H‚ÆŠî’ê–ŒŒ`¬‚É‚¨‚¢‚ĈقȂéƒGƒtƒFƒNƒ^[•ªŽq‚ðŽg‚¢•ª‚¯‚Ä‚¨‚èAŠî’ê–ŒŒ`¬‚ÉŠÖ‚µ‚Ă͖¢’m‚̃GƒtƒFƒNƒ^[•ªŽq‚ÌŠÖ—^‚ªŽ¦´‚³‚ê‚Ü‚·Bj
21-5) Omar, J., Rosenbaum, E., Efergan, A., Abu
Sneineh, B., Yeheskel, A., Maruta, Y. Fukuda, M. and Sagi-Eisenberg, R. (2021)
Biochemical and structural insights into Rab12 interactions with RILP and its family
members. Sci.
Rep. 11, 10317 [PubMed]
21-6) Ganga, A. K., Kennedy, M. C., Oguchi, M. E., Gray, S. D., Oliver, K.
E., Knight, T. A., De La Cruz, E. M., Homma, Y., Fukuda, M. and Breslow, D. K.
(2021) Rab34 GTPase mediates ciliary membrane formation in the intracellular
ciliogenesis pathway. Curr. Biol. 31, 2895-2905 [PubMed]
21-7) Komaki, K., Takano, T., Sato, Y., Asada, A., Ikeda, S., Yamada, K.,
Wei, R., Huo, A., Fukuchi, A., Saito, T., Ando, K., Murayama, S., Araki, W.,
Kametani, F., Hasegawa, M., Iwatsubo, T., Tomomura, M., Fukuda, M., Hisanaga, S.-I.
(2021) Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of ƒÀ-secretase
BACE1. J.
Biochem. 170,
729–738 [PubMed]
21-8) Trofimenko, E., Homma, Y., Fukuda, M. and Widmann, C. (2021) The
endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and
Rab7. Cell Rep.
37, 109945 [PubMed]
21-9) Hatoyama, Y., Homma, Y., Hiragi, S. and Fukuda, M. (2021) Establishment and analysis of conditional Rab1- and Rab5-knockout cells using the auxin-inducible degron system. J. Cell Sci. 134, jcs259184 [PubMed]išM“û“®•¨‚É‹¤’Ê‚µ‚Ä‘¶Ý‚·‚é58Ží—Þ‚ÌRab‚Ì‚¤‚¿ARab1‚ÆRab5‚Ͷ‘¶‚â‘B‚É•K{‚Ì‚½‚ßA‚±‚ê‚܂ŃmƒbƒNƒAƒEƒgiKOj×–EŠ”‚ðŽ÷—§‚·‚邱‚Æ‚ª‚Å‚«‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñAƒI[ƒLƒVƒ“ƒfƒOƒƒ“–@‚ð—p‚¢‚ÄRab1‚ÆRab5‚ÌðŒ•t‚«KO×–EŠ”‚Ì컂ɉ‚߂ĬŒ÷‚µ‚Ü‚µ‚½BKO×–E‚̉ð͂̌‹‰ÊARab1‚ª‰ŠúƒGƒ“ƒhƒ\[ƒ€‚Ì×–E–Œ•ûŒü‚Ö‚Ì—A‘—‚ÉARab5‚ª‰ŠúEŒãŠúƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚Éd—v‚È–ðŠ„‚ð‰Ê‚½‚·‚±‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½B–{ƒc[ƒ‹‚ÌŠJ”‚É‚æ‚èARab1‚âRab5‚Ì‚æ‚èÚׂȋ@”\‰ð–¾‚ª‰Â”\‚ɂȂé‚à‚̂Ɗú‘Ò‚³‚ê‚Ü‚·BjiResearch Highlight‚É‘I’èj
i2020”Nj
20-1) Dolce, L. G., Ohbayashi, N., da Silva, D. F. C., Ferrari, A.
J. R., Pirolla, R. A. S., Schwarzer, A. C. de A. P., Zanphorlin, L. M., Cabral,
L., Fioramonte, M., Ramos, C. H. I., Gozzo, F. C., Fukuda, M., de Giuseppe P.
O. and Murakami, M. T. (2020) Unveiling the interaction between the molecular
motor Myosin Vc and the small GTPase Rab3A. J. Proteomics 212, 103549 [PubMed]
20-2) Kabayama, H., Takeuchi, M., Tokushige, N., Muramatsu, S. I., Kabayama,
M., Fukuda, M., Yamada, Y. and Mikoshiba, K. (2020) An ultra-stable cytoplasmic
antibody engineered for in vivo applications. Nat. Commun. 11, 336 [PubMed]mƒŠƒ“ƒNn
20-3) Ono, S., Otomo, A., Murakoshi S., Mitsui, S., Sato, K., Fukuda, M. and
Hadano, S. (2020) ALS2, the small GTPase Rab17-interacting protein, regulates
maturation and sorting of Rab17-associated endosomes. Biochem. Biophys. Res. Commun. 523, 908-915 [PubMed]
20-4) Kinoshita, R., Homma, Y. and Fukuda, M. (2020) Rab35–GEFs,
DENND1A and folliculin differentially regulate podocalyxin trafficking in two-
and three-dimensional epithelial cell cultures. J. Biol. Chem. 295, 3652-3663 [PubMed]iŽ„’B‚͈ȑOA‚QŽŸŒ³‚Æ‚RŽŸŒ³‚Å”|—{‚µ‚½ã”ç×–EŠ”iMDCK II×–Ej‚É‚¨‚¢‚ÄARab35‚ªˆÙ‚È‚éƒGƒtƒFƒNƒ^[•ªŽq‚ÆŒ‹‡‚·‚邱‚Ƃɂæ‚èA’¸’[–ŒƒVƒOƒiƒ‹•ªŽqEpodocalyxin‚Ì—A‘—‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ä‚¢‚Ü‚·iJCB, 2016jB‚QŽŸŒ³”|—{‚ł͒Êí‚Ìdishã‚ÉA‚RŽŸŒ³”|—{‚Å‚Í×–EŠOƒ}ƒgƒŠƒbƒNƒX‚̃Qƒ‹’†‚Åã”ç×–E—l‚Ì‘gD‚ðŒ`¬‚³‚¹‚Ü‚·‚ªAŠOŠÂ‹«‚̈Ⴂ‚ªRab35‚ÌŠˆ«‰»‚É—^‚¦‚é‰e‹¿‚Í‚±‚ê‚܂őS‚–¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab35‚Ìã—¬Šˆ«‰»ˆöŽq‚Ì’Tõ‚ðs‚¢A‚QŽŸŒ³”|—{‚Å‚ÍfolliculinA‚RŽŸŒ³”|—{‚Å‚ÍDENND1A‚Æ‚¢‚¤ˆÙ‚È‚éRab35–GEF‚ª‹@”\‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
20-5) Marubashi, S. and Fukuda, M. (2020) Rab7B/42 is functionally involved
in protein degradation on melanosomes in keratinocytes. Cell Struct. Funct. 45, 45-55 [PubMed]mƒŠƒ“ƒNnm2020 CSF Awardniƒƒ‰ƒmƒTƒCƒg‚ÅŒ`¬‚³‚ꂽƒƒ‰ƒjƒ“F‘f‚ðŠÜ‚Þƒƒ‰ƒmƒ\[ƒ€‚ÍÅI“I‚ɃPƒ‰ƒ`ƒmƒTƒCƒg‚ւƎ󂯓n‚³‚êA”§‚┯‚̖тւƒ¾’…‚µ‚Ü‚·‚ªAƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€‚ª‚»‚ÌŒã‚ǂ̂悤‚ȉ^–½‚ð’H‚é‚©‚Í—Ç‚•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAEGFP-Rab1`45‚ð—p‚¢‚½–Ô—…“I‚È‹Ç݃XƒNƒŠ[ƒjƒ“ƒO‚É‚æ‚èAƒPƒ‰ƒ`ƒmƒTƒCƒg“à‚ÉŽæ‚螂܂ꂽƒƒ‰ƒmƒ\[ƒ€‚ÍA’Êí‚Ì’ápH‚ÌƒŠƒ\ƒ\[ƒ€‚ł͂ȂALAMP1—z«ARab7B—z«‚Ì–¢’m‚̉敪‚É‘¶Ý‚·‚é‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B‚Ü‚½AM|INKiJB, 2017j‚ð‰ž—p‚µ‚½ƒƒ‰ƒmƒ\[ƒ€ã‚Ì’`”’Ž¿‚ÌV‹K•ª‰ð•]‰¿Œn‚ð\’z‚·‚邱‚Ƃɂæ‚èAƒƒ‰ƒjƒ“‡¬y‘f‚̃`ƒƒVƒi[ƒ[‚Ȃǂª‚±‚̉敪‚ÅRab7BˆË‘¶“I‚É•ª‰ð‚³‚ê‚Ä‚¢‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B¡ŒãARab7B‚É‚æ‚郃‰ƒmƒ\[ƒ€‚Ì’`”’Ž¿‚ÌÚׂȕª‰ð‹@\‚ª–¾‚ç‚©‚ɂȂê‚ÎAƒPƒ‰ƒ`ƒmƒTƒCƒg“à‚ł̃ƒ‰ƒjƒ“‘ãŽÓ‚Ìlˆ×“I§Œä‚ɉž—p‚³‚ê‚邱‚Æ‚àŠú‘Ò‚³‚ê‚Ü‚·Bj
20-6) Wei, R., Sugiyama, A., Sato, Y., Nozumi, M., Nishino, H., Takahashi,
M., Saito, T., Ando, K., Fukuda, M., Tomomura, M., Igarashi, M. and Hisanaga,
S.-I. (2020) Isoform-dependent subcellular localization of LMTK1A and LMTK1B and their roles in axon outgrowth and
spine formation. J. Bichoem. 168,
23-32 [PubMed]
(•\ކ‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)
20-7) Murata, T., Unno, Y. Fukuda, M. and Utsunomiya-Tate, N. (2020) The
dynamic structure of Rab35 is stabilized in the presence of GTP under
physiological conditions. Biochem. Biophys.
Rep. 23, 100776 [PubMed]
20-8) Oguchi, M. E., Okuyama, K., Homma, Y. and Fukuda, M. (2020) A
comprehensive analysis of Rab GTPases reveals a role for Rab34 in serum
starvation-induced primary ciliogenesis. J. Biol. Chem. 295, 12674-12685 [PubMed]
iˆêŽŸ‘@–ÑiƒVƒŠƒAj‚ÍŠOŠE‚©‚ç‚ÌŽhŒƒ‚ɑ΂·‚éƒZƒ“ƒT[‚Æ‚µ‚Ä“‚«A—lX‚ȃVƒOƒiƒ‹Žó—e‚Éd—v‚È–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·BƒVƒŠƒA‚ÌŒ`¬‚ɂ̓_ƒCƒiƒ~ƒbƒN‚È–Œ“®‘Ô‚ª”º‚¤‚½‚ßA–Œ—A‘—‚̧ŒäˆöŽq‚Å‚ ‚é’ᕪŽq—ÊG’`”’Ž¿Rab‚ÌŠÖ—^‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚·‚ªARab‚É‚æ‚éƒVƒŠƒAŒ`¬§Œä‚ÌÚׂȕªŽqŠî”Õ‚Í–¢‚¾–¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍAƒqƒg–Ô–ŒF‘fã”ç×–E—R—ˆ‚ÌhTERT-RPE1×–E‚ð—p‚¢‚ÄAƒVƒŠƒAŒ`¬‚É•K{‚ÈRab‚Ì–Ô—…“I‚ȃmƒbƒNƒ_ƒEƒ“iƒmƒbƒNƒAƒEƒgjƒXƒNƒŠ[ƒjƒ“ƒO‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊA‹Q‰ì—U“±«‚̃VƒŠƒAŒ`¬‚ɂ͂±‚ê‚܂łɊ֗^‚ªŽ¦´‚³‚ê‚Ä‚¢‚½Rab8/10/11‚Ȃǂł͂ȂARab34‚ª•K{‚Å‚ ‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj
20-9) Mizushima, T., Jiang, G., Kawahara, T., Li, P., Han, B., Inoue, S., Ide, H., Kato, I., Jalalizadeh, M., Miyagi, E., Fukuda, M., Reis, L. O. and Miyamoto, H. (2020) Androgen receptor signaling reduces the efficacy of Bacillus Calmette-Guérin therapy for bladder cancer via modulating Rab27b-induced exocytosis. Mol. Cancer Ther. 19, 1930-1942 [PubMed]
20-10) Kuwahara, T., Kai, F., Komori, T., Sakurai, M., Yoshii, G., Eguchi, T., Fukuda, M. and Iwatsubo, T. (2020) Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol. Dis. 145, 105081 [PubMed]
20-11) Bhat, S., Ljubojevic, N., Zhu, S., Fukuda, M., Echard, A. and Zurzolo C. (2020) Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci. Rep. 10, 16803 [PubMed]
20-12) Murakawa, T., Kiger, A. A., Sakamaki, Y., Fukuda, M. and Fujita, N. (2020) An autophagy-dependent tubular lysosomal network synchronizes degradative activity required for muscle remodeling. J. Cell Sci. 133, jcs248336 [PubMed]i“Œ‹žH‹Æ‘åŠw‚Ɉٓ®‚µ‚½“¡“c®M”ŽŽm‚Ƃ̋¤“¯Œ¤‹†‚ÅAƒVƒ‡ƒEƒWƒ‡ƒEƒoƒG‚̋ؓ÷‚ÌÄ\¬Žž‚ÉoŒ»‚·‚éƒI[ƒgƒtƒ@ƒW[ˆË‘¶«‚ÌŠÇ󃊃\ƒ\[ƒ€‚Ì‘¶Ý‚𖾂炩‚É‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn[2020 JCS Prize]
20-13) Ohishi, Y., Ammann, S., Ziaee, V., Strege, K., Groß, M.,
Amos, C. V., Shahrooei, M., Ashournia, P., Razaghian, An., Griffiths, G. M.,
Ehl, S., Fukuda, M. and Parvaneh, N. (2020) Griscelli syndrome type 2 sine
albinism: unraveling differential RAB27A effector engagement. Front. Immunol.
11, 612977 [PubMed]i”’”çǂ𔺂킸A–Ɖu޾г‚Ì‚Ý‚ðŽ¦‚·‚QŒ^ƒOƒŠƒZƒŠÇŒóŒQ‚ÌV‚µ‚¢RAB27A‚̕ψق̉ðÍ‚ðs‚¢‚Ü‚µ‚½BƒCƒ‰ƒ“A‰p‘Aƒxƒ‹ƒM[‚Ì‚SƒJ‘‚ÌŒ¤‹†ŽÒ‚É‚æ‚é‘Û‹¤“¯Œ¤‹†‚̬‰Ê‚Å‚·Ij
20-14) Yoshikawa-Murakami, C., Mizutani, Y., Ryu, A., Naru, E., Teramura, T.,
Homma, Y. and Fukuda, M. (2020) A novel method for visualizing melanosome and
melanin distribution in human skin tissues. Int. J. Mol. Sci. 21, E8514 [PubMed]iƒƒ‰ƒjƒ“F‘f‚ð”Fޝ‚·‚éHA-M-INK‚ÌV‹Kƒvƒ[ƒu‚ðŠJ”‚µAƒqƒg‚̔畆‘gD‚ÌõF‚ɉž—p‚µ‚Ü‚µ‚½B‘gD“à‚É‚¨‚¯‚郃‰ƒjƒ“‚ÌŽOŽŸŒ³“I•ª•z‚ðŽ¦‚·‚±‚Ƃɉ‚߂ĬŒ÷‚µ‚Ü‚µ‚½BДޮ‰ïŽÐƒR[ƒZ[‚Ƃ̎YŠw‹¤“¯Œ¤‹†‚̬‰Ê‚Å‚·IjmƒŠƒ“ƒNniTop
Downloaded Papers 2020‚É‘I’èj
i2019”Nj
19-1) Morishita, S., Wada, N., Fukuda, M. and Nakamura, T. (2019) Rab5
activation on macropinosomes requires ALS2, and subsequent Rab5 inactivation
through ALS2 detachment requires active Rab7. FEBS Lett. 593, 230-241 [PubMed]
19-2) Etoh, K. and Fukuda, M. (2019) Rab10 regulates tubular endosome
formation through KIF13A and KIF13B motors. J. Cell Sci. 132, jcs226977 [PubMed]iFirst person‚ÅЉîjiŠÇóƒGƒ“ƒhƒ\[ƒ€‚͋ߔN”Œ©‚³‚ꂽƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚̈êŽí‚ÅA×–E“à‚ÉŽæ‚螂܂ꂽ“Á’è‚Ì•ªŽqiω×j‚Ì‘I•ʂɊ֗^‚·‚邯l‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µAŠÇóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‹@\‚â‚»‚ÌÚׂȋ@”\‚ɂ‚¢‚Ă͖¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍA–Ô—…“I‚ÈRab‚Ì‹Ç݃XƒNƒŠ[ƒjƒ“ƒO‚ƃmƒbƒNƒAƒEƒg×–EŠ”‚̉ðÍ‚ð‘g‚݇‚킹‚邱‚Æ‚ÅAŠÂóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚É•K{‚̈öŽq‚Æ‚µ‚ÄRab10‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½B‚Ü‚½ARab10‚Í”÷¬ŠÇƒ‚[ƒ^[‚ÌKIF13A/B‚ÆŒ‹‡‚·‚邱‚Ƃɂæ‚èAŠÂóƒGƒ“ƒhƒ\[ƒ€‚ÌŒ`¬‚ÉŠÖ—^‚·‚邱‚Æ‚à–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½BjiHighlighted
Article‚É‘I’èj
19-3) Takahashi, T., Minami, S., Tsuchiya, Y., Tajima, K., Sakai, N., Suga,
K., Hisanaga, S.-I., Ohbayashi, N., Fukuda, M. and Kawahara, H. (2019)
Cytoplasmic control of Rab family small GTPases through BAG6. EMBO Rep.
20, e46794 [PubMed]
19-4) Ohishi, Y., Kinoshita, R., Marubashi, S., Ishida, M. and Fukuda, M.
(2019) The BLOC-3 subunit HPS4 is required for activation of Rab32/38 GTPases
in melanogenesis, but its Rab9 activity is dispensable for melanogenesis. J. Biol. Chem.
294, 6912-6922 [PubMed]iHPS4‚ÍBLOC-3•¡‡‘Ì‚Ì\¬ˆöŽq‚ÅA‚»‚̕ψقɂæ‚è”’”çÇ‚ÌÇó‚ðŽ¦‚·ƒwƒ‹ƒ}ƒ“ƒXƒL[Eƒpƒhƒ‰ƒbƒNÇŒóŒQ‚ðˆø‚«‹N‚±‚µ‚Ü‚·B‹ß”NAHPS4‚ªRab32/38‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚Ä‹@”\‚·‚邾‚¯‚łȂARab9‚̃GƒtƒFƒNƒ^[‚Æ‚µ‚Ä‚àì—p‚·‚邱‚Æ‚ª•ñ‚³‚êA“ñ‚‚ÌRab‚ªƒJƒXƒP[ƒh‚ð\¬‚·‚éiRab9‚ÉŒ‹‡ŒãARab32/38‚ðŠˆ«‰»‚·‚éj‚±‚Æ‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚µ‚½B‚µ‚©‚µA‚±‚ê‚ç‚ÌRab‚Ì‹@”\“I‚ÈŠÖŒW‚Í‚±‚ê‚܂ʼnðÍ‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab32/38‚ðŠˆ«‰»‚Å‚«‚È‚¢•ψّ̂âRab9‚ÆŒ‹‡‚Å‚«‚È‚¢•ψّ̂ð컂·‚邱‚Ƃɂæ‚èARab32/38‚ÌŠˆ«‰»‚̓ƒ‰ƒjƒ“Œ`¬‚É•s‰ÂŒ‡‚Å‚ ‚邪ARab9‚Ƃ̌‹‡‚Í•K{‚łȂ¢‚±‚Æ‚ð‚Í‚¶‚߂˾‚ç‚©‚É‚µ‚Ü‚µ‚½Bj
19-5) Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P. S., Marubashi, S.,
Oguchi, M. E., Ishida, M., Fujita, N. and Fukuda, M. (2019) Comprehensive
knockout analysis of the Rab family GTPases in epithelial cells. J. Cell Biol.
218, 2035-2050 [PubMed]iã”ç×–E—R—ˆ‚ÌMDCK×–E‚ð—p‚¢‚ÄACRISPR/Cas9‚̃Qƒmƒ€•ÒW‹Zp‚É‚æ‚èAšM“û—Þ‚É‹¤’Ê‚µ‚Ä‘¶Ý‚·‚é58Ží—Þ‘S‚Ä‚ÌRab‚̃mƒbƒNƒAƒEƒgiKOjƒRƒŒƒNƒVƒ‡ƒ“‚ð¢ŠE‚ʼn‚ß‚Ä컂µ‚Ü‚µ‚½IKO×–E‚̉ð͂̌‹‰ÊA‚¢‚¸‚ê‚ÌRab‚ÌKO×–E‚Å‚àã”ç×–E‚É“Á—L‚Ì’¸’ê‹É«‚ÍŒ`¬‚³‚ê‚Ü‚·‚ªARab6‚ÌKO×–E‚ł̂݊î’ê–Œ‚ªŒ`¬‚³‚ê‚È‚¢‚±‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½BÚׂȉð͂̌‹‰ÊARab6‚͉—n«’`”’Ž¿‘S”ʂ̕ª”å‚Éd—v‚Å‚·‚ªA–Œ’`”’Ž¿‚Ì×–E–Œ‚Ö‚Ì—A‘—‚ɂ͕K{‚ł͂Ȃ¢‚±‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½B‰Â—n«’`”’Ž¿‚Æ–Œ’`”’Ž¿‚Í“¯‚¶•ª”åŒo˜H‚É‚æ‚èƒSƒ‹ƒW‘Ì‚©‚ç×–E–Œ‚܂ŗA‘—‚³‚ê‚邽‚ßA—¼ŽÒ‚̓Sƒ‹ƒW‘̂œ¯‚¶—A‘—¬–E‚É‘I•Ê‚³‚ê‚邯ˆê”Ê“I‚Él‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA¡‰ñ‚Ì”Œ©‚É‚æ‚èARab6”ñ‘¶Ý‰º‚ł͖Œ’`”’Ž¿‚͉—n«’`”’Ž¿‚Ƃ͈قȂéŽd‘g‚݂ŗA‘—‚³‚ê‚邱‚Æ‚ª‹‚ަ´‚³‚êA‚»‚ÌŽd‘g‚Ý‚ª–¾‚ç‚©‚ɂȂê‚΋³‰È‘‚Ì‹LÚ•ÏX‚É‚à‚‚Ȃª‚é‚à‚̂Ɗú‘Ò‚³‚ê‚Ü‚·BjmƒŠƒ“ƒNn
19-6) Inoue, J., Ninomiya, M., Umetsu, T., Nakamura, T., Kogure, T., Kakazu,
E., Iwata, T., Takai, S., Sano, A., Fukuda, M., Watashi, K., Isogawa, M.,
Tanaka, Y., Shimosegawa, T., McNiven, M. A. and Masamune, A. (2019) Small
interfering RNA screening for the small GTPase Rab proteins identifies that
Rab5B as a major regulator of hepatitis B virus production. J. Virol. 93, e00621-19 [PubMed]
19-7) Furusawa, K., Takasugi, T., Chiu, Y.-W., Hori, Y., Tomita, T., Fukuda,
M. and Hisanaga, S.-I. (2019) CD2-associated protein (CD2AP) overexpression
accelerates amyloid precursor protein (APP) transfer from early endosomes to
the lysosomal degradation pathway. J. Biol. Chem. 294, 10886-10899 [PubMed]
19-8) Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T.,
Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M.,
Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A.,
Kanzaki, M., Wakabayashi, K., Okano, H. and Aoki, M. (2019) Extracellular ƒ¿-synuclein
enters dopaminergic cells by modulating flotillin-1-assisted dopamine
transporter endocytosis. FASEB J. 33,
10240-10256 [PubMed]
19-9) Wei, Z., Zhang, M., Li, C., Huang, W., Fan, Y., Guo, J., Khater, M.,
Fukuda, M., Dong, Z. Hu, G. and Wu, G. (2019) Specific TBC domain-containing
proteins control the ER-Golgi-plasma membrane trafficking of GPCRs. Cell Rep.
28, 554-566 [PubMed]iF1000Prime‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
19-10) Arango Duque, G., Jardim, A., Gagnon, É., Fukuda, M. and Descoteaux, A. (2019)
The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathog.
15, e1007982 [PubMed]mƒŠƒ“ƒNn
19-11) Nishino, H., Saito, T., Wei, R., Takano, T., Tsutsumi, K., Taniguchi,
M., Ando, K., Tomomura, M., Fukuda, M. and Hisanaga, S.-I. (2019) The LMTK1–TBC1D9B–Rab11A
cascade regulates dendritic spine formation via endosome trafficking. J. Neurosci.
39, 9491-9502 [PubMed]
i2018”Nj
18-1) Oguchi, M. E., Etoh, K. and Fukuda, M. (2018) Rab20, a
novel Rab small GTPase that negatively regulates neurite outgrowth of PC12
cells. Neurosci.
Lett. 662, 324-330
[PubMed]i_Œo‰ñ˜H–Ô‚ªŒ`¬‚³‚ê‚éÛ‚É‚ÍA_Œo“Ë‹N‚ªL’·‚µ‚½‚èA‘Þk‚µ‚½‚è‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·B‚±‚ê‚܂œ–Œ¤‹†Žº‚Å‚ÍA_Œo“Ë‹NL’·‚ð‘£i‚·‚éi³‚ɧŒä‚·‚éj’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rab‚Ì‹@”\‰ðÍ‚ðs‚Á‚Ä—ˆ‚Ü‚µ‚½‚ªA•‰‚ɧŒä‚·‚éRab‚ɂ‚¢‚Ă͂قƂñ‚Ç•ñ‚ª‚ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAPC12×–E‚ð—p‚¢‚ÄA_Œo“Ë‹NL’·‚𕉂ɧŒä‚·‚éRab‚̃mƒbƒNƒ_ƒEƒ“ƒXƒNƒŠ[ƒjƒ“ƒO‚ðs‚¢A_Œo“Ë‹NL’·‚ð§Œä‚·‚éV‹KRab‚Æ‚µ‚ÄRab20‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½Bj
18-2) Yoshida, S., Hasegawa, T., Suzuki, M., Sugeno, N., Kobayashi, J.,
Ueyama, M., Fukuda, M., Ido-Fujibayashi, A., Sekiguchi, K., Ezura, M., Kikuchi,
A., Baba, T., Takeda, A., Mochizuki, H., Nagai, Y. and Aoki, M. (2018)
Parkinsonfs disease-linked DNAJC13 mutation aggravates alpha-synuclein-induced neurotoxicity
through perturbation of endosomal trafficking. Hum. Mol. Genet. 27, 823-836 [PubMed]mƒŠƒ“ƒNniF1000Prime‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
18-3) Kuchitsu, Y., Homma, Y., Fujita, N. and Fukuda, M. (2018) Rab7 knockout
unveils regulated autolysosome maturation induced by glutamine starvation. J. Cell Sci.
131, jcs215442 [PubMed]i’ᕪŽq—ÊG’`”’Ž¿Rab7‚ÍŒãŠúƒGƒ“ƒhƒ\[ƒ€‚É‚¨‚¯‚é–Œ—A‘—‚¾‚¯‚łȂAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÆƒŠƒ\ƒ\[ƒ€‚Ì—Z‡‰ß’ö‚É‚àŠÖ—^‚·‚邯l‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA¡‰ñšM“û“®•¨×–E‚ÅRab7‚̃mƒbƒNƒAƒEƒgiKOjŠ”‚ðŽ÷—§‚µ‚½‚Æ‚±‚ëARab7‚̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÆƒŠƒ\ƒ\[ƒ€‚Ì—Z‡‚ɂ͕K{‚ł͂ȂARab7-KOŠ”‚ł̓I[ƒgƒŠƒ\ƒ\[ƒ€‚ª’~Ï‚µ‚Ä‚¢‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½B‚Ü‚½A’~Ï‚µ‚Ä‚¢‚½ƒI[ƒgƒŠƒ\ƒ\[ƒ€‚ªAƒOƒ‹ƒ^ƒ~ƒ“‹Q‰ì‚É‚æ‚èÁޏ‚·‚邯‚¢‚¤‹»–¡[‚¢Œ»Û‚àŒ©o‚µ‚Ü‚µ‚½B‚·‚Ȃ킿A‰h—{‹Q‰ì‚É‚æ‚éŽhŒƒ‚̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÌŒ`¬‚¾‚¯‚łȂA‚»‚̬n‰ß’ö‚à‘£i‚·‚邱‚Æ‚ª‰‚߂˾‚ç‚©‚ɂȂè‚Ü‚µ‚½BjiHighlighted
Article‚É‘I’èj
18-4) Ogawa, M., Matsuda, R., Takada, N., Tomokiyo, M., Yamamoto, S.,
Shizukuishi, S., Yamaji, T., Yoshikawa, Y., Yoshida, M., Tanida, I., Koike, M.,
Murai, M., Morita, H., Takeyama, H., Ryo, A., Guan, J.-L., Yamamoto, M., Inoue,
J. I., Yanagawa, T., Fukuda, M., Kawabe, H. and Ohnishi, M. (2018) Molecular mechanisms
of Streptococcus pneumoniae-targeted
autophagy via pneumolysin, Golgi-resident Rab41, and Nedd4-1 mediated
K63-linked ubiquitination. Cell. Microbiol. 20, e12846 [PubMed]
18-5) Kanemitsu-Fujita,
A., Morishita, S., Kjaer, S., Fukuda, M., Schiavo, G. and Nakamura, T. (2018) Comparable affinity of RabGDIƒ¿ for GTP- and
GDP-bound forms of Rab7 supports a four-state transition model for Rab7
subcellular localization. bioRxiv 287516 [link]
18-6) Eguchi, T., Kuwahara, T., Sakurai, M., Komori, T., Fujimoto, T., Ito,
G., Yoshimura, S.-I., Harada, A., Fukuda, M., Koike, M. and Iwatsubo, T. (2018)
LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed
lysosomes and maintain their homeostasis. Proc. Natl. Acad. Sci. U.S.A. 115, E9115-E9124 [PubMed]mƒŠƒ“ƒNn
18-7) Zhu, S., Bhat, S., Syan, S., Kuchitsu, Y., Fukuda, M. and Zurzolo, C.
(2018) Rab11a-Rab8a cascade regulate the formation of tunneling nanotubes
through vesicle recycling. J. Cell Sci. 131, jcs215889 [PubMed]
18-8) Hatta, T., Iemura, S.I., Ohishi, T., Nakayama, H., Seimiya, H., Yasuda,
T., Iizuka, K., Fukuda, M., Takeda, J., Natsume, T. and Horikawa, Y. (2018)
Calpain-10 regulates actin dynamics by proteolysis of microtubule-associated
protein 1B. Sci.
Rep. 8, 16756 [PubMed]
i2017”Nj
17-1) Furusawa, K., Asada, A., Urrutia, P., Gonzalez-Billault, C., Fukuda, M.
and Hisanaga, S. I. (2017) Cdk5 regulation of
the GRAB-mediated Rab8-Rab11 cascade in axon outgrowth. J. Neurosci. 37, 790-806 [PubMed]
17-2) Fujita, N., Huang, W., Lin, T.-H., Groulx, J.-F., Jean, S., Nguyen, J., Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M. and Kiger, A. A. (2017) Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. eLife 6, e23367 [PubMed]i“¡“c®M•‹³‚Ƃ̋¤“¯Œ¤‹†‚ÅAƒVƒ‡ƒEƒV゙ƒ‡ƒEƒn゙ƒG‚Ì‹Ø×–E‚©゙•ϑԊú‚ɃI[ƒgƒtƒ@ƒV゙[‚É‚æ‚è‘å‹K–Í‚Éì‚è‘Ö‚¦‚ç‚ê‚錻ۂðŒ©o‚µAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÆƒŠƒ\ƒ\[ƒ€‚Ì—Z‡‚ð§Œä‚·‚éV•ªŽq‚Æ‚µ‚ÄRab2‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn
17-3) Ishida, M., Marubashi, S. and Fukuda, M. (2017) M-INK, a novel tool for
visualizing melanosomes and melanocores. J. Biochem. 161,
323-326 [PubMed]iƒƒ‰ƒmƒTƒCƒg‚ÅŒ`¬‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€iƒƒ‰ƒjƒ“F‘fj‚ÍÅI“I‚ɃPƒ‰ƒ`ƒmƒTƒCƒg‚ւƎ󂯓n‚³‚êA”§‚┯‚̖тւƒ¾’…‚µ‚Ü‚·‚ªA‚»‚̎󂯓n‚µ‚Ì•ªŽq‹@\‚ÍŽÀ‚͂قƂñ‚lj𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB‰ð–¾‚ª’x‚ê‚Ä‚¢‚éÅ‘å‚Ì——R‚̈ê‚‚Ƃµ‚ÄAƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€‚ð“K؂ɌŸo‚·‚éƒc[ƒ‹‚ª–³‚¢‚±‚Æ‚ª‹“‚°‚ç‚ê‚Ü‚·B¡‰ñŽ„’B‚ÍAƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ꂽƒƒ‰ƒmƒ\[ƒ€‚ðŒø—¦—Ç‚ŒŸo‚·‚éV‹K‚̃c[ƒ‹EwM-INKx‚ÌŠJ”‚ɬŒ÷‚µ‚Ü‚µ‚½B¡ŒãAM-INK‚ð‹ìŽg‚·‚邱‚Ƃɂæ‚èAƒPƒ‰ƒ`ƒmƒTƒCƒg‚ւ̃ƒ‰ƒmƒ\[ƒ€‚̎󂯓n‚µ‚Ì•ªŽq‹@\‚ª‰ð–¾‚³‚ê‚邱‚Æ‚ªŠú‘Ò‚³‚ê‚Ü‚·BjmƒŠƒ“ƒNn
17-4) Aoki, Y., Manzano, R., Lee, Y., Dafinca, R., Aoki, M., Douglas, A. G.
L., Varela, M. A., Sathyaprakash, C., Scaber, J., Barbagallo, P., Vader, P., Mäger, I.,
Ezzat, K., Turner, M. R., Ito, N., Gasco, S., Ohbayashi, N., El-Andaloussi, S.,
Takeda, S., Fukuda, M., Talbot, K. and Wood, M. J. A. (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in
amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140, 887-897 [PubMed]iEditorfs choice‚É‘I’èj
17-5) Kabayama, H., Tokushige, N., Takeuchi, M., Kabayama, M., Fukuda, M. and
Mikoshiba, K. (2017) Parkin promotes
proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination.
Mol. Cell.
Neurosci. 80, 89-99 [PubMed]
17-6) Oguchi, M. E., Noguchi, K. and Fukuda, M. (2017) TBC1D12 is a novel Rab11-binding protein that
modulates neurite outgrowth of PC12 cells. PLoS One 12,
e0174883 [PubMed]iƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Í×–E–Œã‚Ì•ªŽq‚ÌƒŠƒTƒCƒNƒ‹‚¾‚¯‚łȂA×–EŽ¿•ª—ôAƒI[ƒgƒtƒ@ƒW[A_Œo“Ë‹NL’·‚Ȃǂ̶–½Œ»Û‚É‚¨‚¢‚Äd—v‚È–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·BƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ł̕¨Ž¿—A‘—‚ɂ͒ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rab11‚ȂǂªŠÖ—^‚µ‚Ü‚·‚ªA‚»‚ÌŽž‹óŠÔ“I‚ȧŒä‚Í\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍARab‚Ì•sŠˆ«‰»ˆöŽq‚Æl‚¦‚ç‚ê‚Ä‚¢‚é43Ží—Þ‚ÌTBCƒ^ƒ“ƒpƒNŽ¿‚É’…–Ú‚µAƒŠƒTƒCƒNƒGƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Å‹@”\‚·‚éV‹KTBCƒ^ƒ“ƒpƒNŽ¿‚Ì’Tõ‚ðs‚¢‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊATBC1D12‚ªRab11‚ÆŒ‹‡‚µ‚ÄƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‹ÇÝ‚µARab11ˆË‘¶“I‚É_Œo“Ë‹NL’·‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
17-7) Takahama, M., Fukuda, M., Ohbayashi, N., Kozaki, T., Misawa, T.,
Okamoto, T., Matsuura, Y., Akira, S. and Saitoh, T. (2017) The RAB2B-GARIL5 complex promotes cytosolic
DNA-induced innate immune responses. Cell Rep. 20,
2944-2954 [PubMed]
17-8) Klein, O., Roded, A., Zur, N., Azouz, N. P., Pasternak, O., Hirschberg,
K., Hammel, I., Roche, P. A., Yatsu, A., Fukuda, M., Galli, S. J. and
Sagi-Eisenberg, R. (2017) Rab5 is critical for
SNAP23 regulated granule-granule fusion during compound exocytosis. Sci. Rep.
7, 15315 [PubMed]
17-9) Li, C., Wei, Z., Fan, Y., Huang, W., Su, Y., Li, H., Dong, Z., Fukuda,
M., Khater, M. and Wu, G. (2017) The GTPase
Rab43 controls the anterograde ER-Golgi trafficking and sorting of GPCRs. Cell Rep.
21, 1089-1101 [PubMed]
i2016”Nj
16-1) Hirano, S., Uemura, T., Annoh, H., Fujita, N., Waguri, S., Itoh, T. and
Fukuda, M. (2016) Differing
susceptibility to autophagic degradation activity of two LC3-binding proteins:
SQSTM1/p62 and TBC1D25/OATL1. Autophagy 12, 312-326 [PubMed]iRab33B•sŠˆ«‰»ˆöŽqEOATL1‚ÍLC3‚ÆŒ‹‡‚·‚邱‚Ƃɂæ‚èƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÉƒŠƒNƒ‹[ƒg‚µAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÆƒŠƒ\ƒ\[ƒ€‚Ì—Z‡‰ß’ö‚ð§Œä‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·BLC3‚̓I[ƒgƒtƒ@ƒSƒ\[ƒ€‚Ì“à–Œ‚ÆŠO–Œ‚Ì—¼•û‚É‹ÇÝ‚·‚邽‚ßA“à‘¤‚ÌLC3‚̓I[ƒgƒtƒ@ƒW[‚É‚æ‚蕪‰ð‚³‚ê‚Ü‚·BLC3‚ÆŒ‹‡‚·‚ép62‚àƒI[ƒgƒtƒ@ƒW[‚É‚æ‚镪‰ð‚ðŽó‚¯‚Ü‚·‚ªAOATL1‚͉½ŒÌ‚©ƒI[ƒgƒtƒ@ƒW[‚̊‚ɂ͂Ȃè‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍAOATL1‚ªƒI[ƒgƒtƒ@ƒW[‚É‚æ‚镪‰ð‚©‚ç‰ñ”ð‚·‚é‹@\‚̉𖾂Ɏæ‚è‘g‚ÝAOATL1‚Íp62‚Ƃ͈قȂèƒIƒŠƒSƒ}[‰»”\‚ðŽ‚½‚¸A‘I‘ð“I‚ɃI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÌŠO–Œ‚É‹ÇÝ‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
16-2) Marubashi, S., Shimada, H., Fukuda, M. and Ohbayashi, N. (2016) RUTBC1
functions as a GTPase-activating protein for Rab32/38 and regulates melanogenic
enzyme trafficking in melanocytes. J. Biol. Chem. 291, 1427-1440 [PubMed]iƒƒ‰ƒjƒ“‡¬y‘f‚̃ƒ‰ƒmƒ\[ƒ€‚Ö‚Ì—A‘—‚É‚ÍRab32/38‚ª•K{‚Ì–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·B‚±‚ê‚܂ł̌¤‹†‚ÅARab32/38‚̃GƒtƒFƒNƒ^[•ªŽq‚Æ‚µ‚ÄVarpAŠˆ«‰»ˆöŽqiGEFj‚Æ‚µ‚ÄBLOC-3•¡‡‘ÌiHPS1/4j‚ª“¯’肳‚ê‚Ä‚¢‚Ü‚·‚ªAƒƒ‰ƒmƒTƒCƒg‚Å‹@”\‚·‚éRab32/38•sŠˆ«‰»ˆöŽqiGAPj‚Ì‘¶Ý‚Í–¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARUTBC1‚Æ‚¢‚¤TBC’`”’Ž¿‚ªƒƒ‰ƒmƒTƒCƒg‚É‚¨‚¢‚ÄRab32/38‚Ì•sŠˆ«‰»ˆöŽq‚Æ‚µ‚Ä‹@”\‚µAƒƒ‰ƒjƒ“‡¬y‘f‚̧Œä‚ÉŠÖ‚í‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B®A–{Œ¤‹†‚Í’}”g‘åŠw‚Ɉٓ®‚µ‚½‘å—Ñ“T•F”ŽŽm‚Ƃ̋¤“¯Œ¤‹†‚Å‚·Bj
16-3) Yasuda, S., Morishita, S., Fujita, A., Nanao, T., Wada, N., Waguri, S.,
Schiavo, G., Fukuda, M. and Nakamura, T. (2016) Mon1-Ccz1 activates Rab7 only
on late endosomes and dissociates from the lysosome in mammalian cells. J. Cell Sci.
129, 329-340 [PubMed]iIn this issue‚É‘I’èj
16-4) Efergan, A., Azouz, N. P., Klein, O., Noguchi, K., Rothenberg, M. E., Fukuda, M. and Sagi-Eisenberg, R. (2016) Rab12 regulates retrograde transport of mast cell secretory granules by interacting with the RILP-dynein complex. J. Immunol. 196, 1091-1101 [PubMed]
16-5) Hashimoto, A., Oikawa, T., Hashimoto, S., Sugino, H., Yoshikawa, A.,
Otsuka, Y., Handa, H., Onodera, Y., Nam, J.-M., Oneyama, C., Okada, M., Fukuda,
M. and Sabe, H. (2016) P53- and mevalonate pathway–driven
malignancies require Arf6 for metastasis and drug resistance. J. Cell Biol. 213, 81-95 [PubMed]iIn Focus‚É‘I’èj
16-6) Mrozowska, P. S. and Fukuda, M. (2016) Regulation of podocalyxin
trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures. J. Cell Biol. 213, 355-369 [PubMed]iSpotlight‚É‘I’èjiF1000Prime‚ÌRecommended
paper‚Æ‚µ‚Ä‘I’èjiã”ç×–E‚ׂ͗臂Á‚½×–E‚â×–EŠOƒ}ƒgƒŠƒbƒNƒX‚ÆÚ‚·‚鑤’ê–Œ‚Æ‚¢‚·゙‚ê‚Æ‚àÚ‚µ‚È‚¢’¸’[–Œ‚ðŽ‚¿A—¼ŽÒ‚Í–§’…Œ‹‡‚É‚æ‚èŠu‚Ä‚ç‚ê‚Ä‚¢‚Ü‚·B‚±‚Ì‚½‚ßA‚»‚ꂼ‚ê‚Ì–Œ‚Å“‚ƒ^ƒ“ƒpƒNŽ¿‚͋ɫ—A‘—‚ƌĂ΂ê‚é“ÁŽê‚È—A‘—ƒVƒXƒeƒ€‚Å–Ú“I’n‚ɉ^‚΂ê‚é•K—v‚ª‚ ‚è‚Ü‚·‚ªA‚»‚ÌÚׂȎd‘g‚݂͗ǂ•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍAMDCK II×–E‚ð—p‚¢‚ÄAƒVƒOƒiƒ‹•ªŽq‚̈êŽí‚Å‚ ‚épodocalyxin‚Ì’¸’[–Œ‚Ö‚Ì—A‘—‹@\‚ðÚׂɉðÍ‚µA‚QŽŸŒ³‚Æ‚RŽŸŒ³iƒVƒXƒgj‚Å”|—{‚µ‚½ã”ç×–E‚ł͈قȂéƒZƒbƒg‚ÌRab‚âƒGƒtƒFƒNƒ^[•ªŽq‚ªpodocalyxin‚Ì—A‘—‚ð§Œä‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj
16-7) Marubashi, S., Ohbayashi, N. and Fukuda, M. (2016) A Varp-binding
protein, RACK1, regulates dendrite outgrowth through stabilization of Varp
protein in mouse melanocytes. J. Invest. Dermatol. 136, 1672-1680 [PubMed]iVarp•ªŽq‚Í‚SŽí—Þ‚ÌRabiRab21,
Rab32/38, Rab40Cj‚̧ŒäˆöŽq‚Æ‚µ‚Ä‹@”\‚µAƒƒ‰ƒmƒTƒCƒg‚É‚¨‚¢‚ÄŽ÷ó“Ë‹N‚ÌŒ`¬‚⃃‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª‚±‚ê‚܂łɖ¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚·B¡‰ñŽ„’B‚ÍAVarp•ªŽq‚ÌV‚½‚ÈANRK2Œ‹‡ˆöŽq‚Æ‚µ‚ÄRACK1‚ðŒ©o‚µ‚Ü‚µ‚½BRACK1‚ÍRab40C‚Æ‹£‡‚·‚邱‚Ƃɂæ‚èVarp•ªŽq‚̈À’艻‚ÉŠñ—^‚·‚邽‚ßARACK1ƒmƒbƒNƒ_ƒEƒ“×–E‚Å‚ÍVarp•ªŽq‚ªŒ¸‚µAŒ‹‰Ê“I‚ÉŽ÷ó“Ë‹N‚ÌL’·‚⃃‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ª‘jŠQ‚³‚ê‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½Bj
16-8) Wankel, B., Ouyang, J., Guo, X., Hadjiolova, K., Miller, J., Liao, Y.,
Tham, D. K. L., Romih, R., Andrade, L. R., Gumper, I., Simon, J.-P., Sachdeva,
R., Tolmachova, T., Seabra, M. C., Fukuda, M., Schaeren-Wiemers, N., Hong, W.
J., Sabatini, D. D., Wu, X.-R., Kong, X., Kreibich, G., Rindler, M. J. and Sun
T.-T. (2016) Sequential and compartmentalized action of Rabs, SNAREs, and MAL
in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol. Biol. Cell 27, 1621-1634 [PubMed]
16-9) Homma, Y. and Fukuda, M. (2016) Rabin8 regulates neurite outgrowth in both
GEF-activity-dependent and -independent manners. Mol. Biol. Cell 27, 2107-2118 [PubMed]iA
Highlights from MBoC Selection‚É‘I’èji_Œo“Ë‹N‚ðL’·‚·‚éÛ‚É‚ÍAŠj‹ß–T‚ÌƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç“Ë‹N•ûŒü‚Ö‚Ì–Œ—A‘—‚ªd—v‚Å‚ ‚èA‚±‚̉ߒö‚É‚ÍRab8, Rab11, Rab35‚Ȃǂ̒ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿‚ÌŠÖ—^‚ª–¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚·B‚±‚ê‚ç‚ÌRab‚Í_Œo¬’·ˆöŽqˆË‘¶“I‚ÉŠˆ«‰»‚³‚êAƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‹ÇÝ‚·‚邯l‚¦‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA‚»‚Ì•ªŽq‹@\‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab8‚Ìã—¬Šˆ«‰»ˆöŽqiGEFj‚Æ‚µ‚Ä’m‚ç‚ê‚éRabin8‚Ì‹@”\‰ðÍ‚ðs‚¢A‚±‚Ì•ªŽq‚ªƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‚¨‚¢‚ÄRab8‚¾‚¯‚łȂRab10‚ÌŠˆ«‰»‚ð‰î‚µ‚Ä_Œo“Ë‹N‚ÌL’·‚ð‘£i‚·‚邾‚¯‚Å–³‚ARab11ˆË‘¶“I‚ÉGEFŠˆ«‚Ƃ͖³ŠÖŒW‚É_Œo“Ë‹NL’·‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
16-10) Mankouri, J., Walter, C., Stewart, H.,
Bentham, M. J., Park, W. S., Heo, W. D., Fukuda, M., Griffin, S. and Harris, M. (2016) Release of infectious hepatitis C virus from Huh7 cells occurs via a trans-Golgi network to endosome pathway
independent of very-low-density lipoprotein secretion. J. Virol. 90, 7159-7170 [PubMed]
16-11) Villarroel-Campos, D., Henriquez, D. R.,
Bodaleo, F. J., Oguchi, M. E., Bronfman, F. C., Fukuda, M. and
Gonzalez-Billault, C. (2016) Rab35
functions in axon elongation are regulated by p53-related protein kinase (PRPK)
in a mechanism that involves Rab35 protein degradation and the
microtubule-associated protein 1B. J. Neurosci.
36, 7298-7313 [PubMed]
16-12) Bello, O. D., Cappa A. I., de Paola M., Zanetti, M. N., Fukuda, M.,
Fissore, R. A., Mayorga, L. S. and Michaut, M. A. (2016) Rab3A, a possible marker of cortical granules,
participates in cortical granule exocytosis in mouse eggs. Exp. Cell Res.
347, 42-51 [PubMed]
16-13) Makino, A., Hullin-Matsuda, F., Murate, M., Abe, M., Tomishige, N.,
Fukuda, M., Yamashita, S., Fujimoto, T., Vidal, H., Lagarde, M.,
Delton-Vandenbroucke, I. and Kobayashi, T. (2016) Acute accumulation of free cholesterol induces the degradation of
perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured
human hepatocytes. Mol. Biol. Cell 27, 3293-3304 [PubMed]
i2015”Nj
15-1) Yatsu, A., Shimada, H., Ohbayashi, N. and Fukuda, M. (2015) Rab40C is a novel Varp-binding protein
that promotes proteasomal degradation of Varp in melanocytes. Biol.
Open 4,
267-275 [PubMed]iVarp•ªŽq‚ÍN––’[‘¤‚ÌVPS9ƒhƒƒCƒ“‚ð‰î‚µ‚ÄRab21‚ðŠˆ«‰»‚·‚邱‚Ƃɂæ‚胃‰ƒmƒTƒCƒg‚ÌŽ÷ó“Ë‹N‚ÌŒ`¬‚ð‘£i‚µA’†‰›‚ÌANKR1ƒhƒƒCƒ“‚ð‰î‚µ‚ÄRab32/38‚ðŒ‹‡‚·‚邱‚Ƃɂæ‚胃‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªAC––’[‘¤‚Ɉʒu‚·‚éANKR2ƒhƒƒCƒ“‚Ì‹@”\‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍANKR2ƒhƒƒCƒ“‚ÉRab40C‚ª“ÁˆÙ“I‚ÉŒ‹‡‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½BRab40C‚Í‘¼‚̈ê”Ê“I‚ÈRab‚Ƃ͈قȂèASOCSƒ{ƒbƒNƒX‚ƌĂ΂ê‚郆ƒrƒLƒ`ƒ“ƒŠƒK[ƒ[‚ðƒŠƒNƒ‹[ƒg‚·‚é—̈æ‚ðŽ‚¿AVarp•ªŽq‚ðƒvƒƒeƒAƒ\[ƒ€ˆË‘¶“I‚É•ª‰ð‚·‚邱‚Æ‚ª–¾‚ç‚©‚ƂȂè‚Ü‚µ‚½B‚±‚Ì‚½‚ßARab40C‚ð‰ßè‚É”Œ»‚·‚郃‰ƒmƒTƒCƒg‚Å‚ÍAVarp•ªŽq‚Ì•ª‰ð‚ª˜´i‚µAƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—‚ª‘jŠQ‚³‚ê‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½BjmƒŠƒ“ƒNn
15-2) Ishida, M., Ohbayashi, N. and Fukuda, M. (2015) Rab1A regulates anterograde melanosome
transport by recruiting kinesin-1 to melanosomes through interaction with SKIP.
Sci. Rep. 5, 8238 [PubMed]iƒƒ‰ƒjƒ“F‘f‚ðŠÜ‚Þ¬nƒƒ‰ƒmƒ\[ƒ€‚Í”÷¬ŠÇ‚ƃAƒNƒ`ƒ“üˆÛ‚ɉˆ‚Á‚Ä×–E–ŒŽü•ӂ܂ŗA‘—‚³‚ê‚Ü‚·‚ªA”÷¬ŠÇã‚̇s«—A‘—‚ÌŽd‘g‚݂͂±‚ê‚Ü‚Å\•ª‚É—‰ð‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAˆÈ‘O•ñ‚µ‚½”÷¬ŠÇ‡s«—A‘—‚̧ŒäˆöŽqERab1A‚̃GƒtƒFƒNƒ^[•ªŽq‚Æ‚µ‚ÄSKIP/PLEKHM2‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BSKIP‚͇s«‚̃‚[ƒ^[‚Å‚ ‚éƒLƒlƒVƒ“I‚ÆŒ‹‡‚µAƒƒ‰ƒmƒ\[ƒ€‚ð—A‘—‚·‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½B‚Ü‚½ASKIP‚ÍƒŠƒ\ƒ\[ƒ€ã‚ÌArl8‚ƌĂ΂ê‚é•ʂ̒ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿‚Æ‚àŒ‹‡‚µAƒŠƒ\ƒ\[ƒ€‚Ì—A‘—‚É‚àŠÖ‚í‚邱‚Æ‚©‚çASKIP-ƒLƒlƒVƒ“I‚ÍRab1A‚ÆArl8‚ð“Æ—§‚̃J[ƒSƒŒƒZƒvƒ^[‚Æ‚µ‚Ä—p‚¢‚Ä“ñŽí—ނ̃Iƒ‹ƒKƒlƒ‰‚ð—A‘—‚µ•ª‚¯‚é‹@\‚ªŽ¦´‚³‚ê‚Ü‚µ‚½Bj
15-3) Etoh, K. and Fukuda, M. (2015)
Structure-function analyses of the small GTPase Rab35 and its efffector protein
centaurin-ƒÀ2/ACAP2 during neurite outgrowth of PC12 cells. J.
Biol. Chem. 290,
9064-9074 [PubMed]iRab35‚ÍƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç‚̬–E—A‘—‚ð§Œä‚µA_Œo“Ë‹NL’·A×–E•ª—ôA×–EˆÚ“®‚ȂǗlX‚ȶ—Œ»Û‚ÉŠÖ—^‚µ‚Ü‚·BRab35‚Í7Ží—ÞˆÈã‚̃GƒtƒFƒNƒ^[•ªŽq‚ÆŒ‹‡‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA‚»‚ê‚ç‚ÌRab35”Fޝ‚Ì•ªŽqŠî”Õ‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍARab35‚Æcentaurin-ƒÀ2‚Ì\‘¢‹@”\‘ŠŠÖ‚ÉŠÖ‚·‚錤‹†‚ðs‚¢AŒ‹‡‚É•K{‚ȃAƒ~ƒmŽ_‚Ì“¯’è‚ɉ‚߂ĬŒ÷‚µ‚Ü‚µ‚½BRab35‚̃XƒCƒbƒ`II—̈æ‚É‘¶Ý‚·‚é“ñ‚‚ÌThrŽcŠî‚ɕψقð‰Á‚¦‚½Rab35•ψّ̂łÍAcentaurin-ƒÀ2‚Ƃ̌‹‡‚݂̂ªŒ‡‘¹‚µA_Œo“Ë‹N‚ÌL’·‚ð‘£i‚·‚éŒø‰Ê‚ªÁޏ‚µ‚Ä‚¢‚Ü‚µ‚½B¡ŒãA‚±‚̕ψّ̂ð—p‚¢‚邱‚Ƃɂæ‚èRab35Ecentaurin-ƒÀ2•¡‡‘Ì‚ª‚ǂ̂悤‚ȶ—Œ»Û‚ÉŠÖ—^‚·‚é‚Ì‚©‚ð‰ðÍ‚·‚é‚̂ɗL—p‚Æl‚¦‚ç‚ê‚Ü‚·Bj
15-4) Amagai, Y., Itoh, T., Fukuda, M. and Mizuno,
K. (2015) Rabin8 suppresses autophagosome formation
independently of its guanine nucleotide-exchange activity towards Rab8. J. Biochem.
158, 139-153 [PubMed]
15-5) Yasuda, T., Homma, Y. and Fukuda, M. (2015) Slp2-a inactivates ezrin by recruiting
protein phosphatase 1 to the plasma membrane. Biochem. Biophys. Res. Commun. 460, 896-902 [PubMed]iSlp2-a‚ÍMDCK×–E‚É‚¨‚¯‚é‹É«—A‘—‚â×–E‚̑傫‚³§Œä‚ÉŠÖ—^‚µ‚Ä‚¨‚èASlp2-aŒ‡‘¹×–E‚Å‚Í×–E”ì‘å‚ÌÇó‚ðŽ¦‚·‚±‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·B‚±‚Ì×–E”ì‘å‚É‚Íezrin‚ƌĂ΂ê‚éƒVƒOƒiƒ‹•ªŽq‚̉ßè‚ÈŠˆ«‰»‚ªŠÖ—^‚·‚邱‚Æ‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚µ‚½‚ªA‚»‚ÌÚׂȎd‘g‚݂͂±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍASlp2-a‚ÌV‚½‚ÈŒ‹‡•ªŽq‚Æ‚µ‚ÄPP1‚ƌĂ΂ê‚éƒzƒXƒtƒ@ƒ^[ƒ[‚𓯒肵A‚±‚ÌPP1‚ª×–E–Œã‚Åezrin‚ð’EƒŠƒ“Ž_‰»‚·‚邱‚Ƃɂæ‚èA×–E‚̑傫‚³‚ðƒRƒ“ƒpƒNƒg‚ɕۂ‚±‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
15-6) Imai, A., Tsujimura, M., Yoshie, S. and Fukuda, M. (2015) The small GTPase Rab33A participates in
regulation of amylase release from parotid acinar cells. Biochem.
Biophys. Res. Commun. 461, 469-474 [PubMed]i“ú–{Ž•‰È‘åŠw‚Ì¡ˆä‚ ‚©‚Ë”ŽŽm‚Ƃ̋¤“¯Œ¤‹†‚ÅARab33A‚ªŠO•ª”å×–E‚Å‚ ‚é‘Á‰t‘B‘B–[×–E‚Ì•ª”åè÷—±ã‚É‚à‘¶Ý‚µAƒAƒ~ƒ‰[ƒ[‚Ì•ª”å‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
15-7) Shimada-Sugawara, M., Sakai, E., Okamoto, K., Fukuda, M., Izumi, T.,
Yoshida, N. and Tsukuba, T. (2015)
Rab27A regulates transport of cell surface receptors modulating multinucleation
and lysosome-related organelles in osteoclasts. Sci. Rep. 5,
9620 [PubMed]
15-8) Egami, Y., Fujii, M., Kawai, K., Ishikawa, Y., Fukuda, M. and Araki, N. (2015) Activation-inactivation cycling of Rab35
and ARF6 is required for phagocytosis of zymosan in RAW264 macrophages. J.
Immunol. Res. 2015:429439 [PubMed]
15-9) Aizawa, M. and Fukuda, M. (2015) Small GTPase Rab2B and its specific binding protein
Golgi-associated Rab2B interactor-like 4 (GARI-L4) regulate Golgi morphology. J.
Biol. Chem. 290,
22250-22261 [PubMed]iRab‚É‚æ‚é–Œ—A‘—‚̓Sƒ‹ƒW‘̂ȂǃIƒ‹ƒKƒlƒ‰‚ÌŒ`‘Ô‚âƒAƒCƒfƒ“ƒeƒBƒeƒB[‚Éd—v‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚·B¡‰ñŽ„’B‚ÍAƒSƒ‹ƒW‘̂̌`‘Ô‚ÉŠÖ‚í‚éRab•ªŽq‚Ì–Ô—…“I‹@”\‰ðÍ‚ðs‚¢A‚È‚‚Æ‚à˜Z‚‚ÌRab•ªŽqiRab1A/1B/2A/2B/6B/8Aj‚ªHeLa-S3×–E‚̃Rƒ“ƒpƒNƒg‚ȃSƒ‹ƒW‘̂̌`‘ÔˆÛŽ‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B‚Ü‚½Ai‰»“I‚ɕۑ¶«‚ª‚‚—ÞŽ—‚Ì‹@”\‚ðŽ‚Â‚Æ„‘ª‚³‚ê‚Ä‚¢‚½Rab2A‚ÆRab2B‚ªƒSƒ‹ƒW‘̂̌`‘ÔˆÛŽ‚É‚¨‚¢‚Ă͓Ɨ§‚É‹@”\‚·‚邱‚Ƃ𖾂炩‚É‚µARab2B“ÁˆÙ“I‚ÈŒ‹‡•ªŽq‚Æ‚µ‚ÄGARI-L4‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½Bj
i2014”Nj
14-1) Ikawa, K., Satou, A., Fukuhara, M., Matsumura, S. Sugiyama, N., Goto,
H., Fukuda, M., Inagaki, M., Ishihama, Y. and Toyoshima, F. (2014) Inhibition of endocytic vesicle fusion by
Plk1-mediated phosphorylation of vimentin during mitosis. Cell
Cycle 13,
126-137 [PubMed]
14-2) Yasuda, T.
and Fukuda, M. (2014) Slp2-a
controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27.
J.
Cell Sci. 127, 557-570 [PubMed]iSlp2-a‚ÍRab27ƒGƒtƒFƒNƒ^[‚Æ‚µ‚Ä‹@”\‚·‚邱‚Ƃɂæ‚è’¸’[•”×–E–Œ‚ւ̬–E—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚µ‚½‚ªA¡‰ñŽ„’B‚ÍSlp2-a‚ªRab27A‚Ì‹@”\‚Ƃ͖³ŠÖŒW‚ÉMDCK×–Eit‘Ÿ”A׊Çã”ç×–E—R—ˆj‚̑傫‚³‚ð§Œä‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B‚·‚Ȃ킿ASlp2-a‚Í‚±‚ê‚܂ŋ@”\‚ª–¾‚ç‚©‚ł͂Ȃ©‚Á‚½C2BƒhƒƒCƒ“‚ð‰î‚µ‚ÄRap1GAP2‚ð×–E–Œ‚ÉƒŠƒNƒ‹[ƒg‚µA×–E‚̑傫‚³‚ðƒRƒ“ƒpƒNƒg‚É•Û‚Â–ðŠ„‚ð’S‚Á‚Ä‚¢‚Ü‚µ‚½Bt‘Ÿ”ì‘å‚𔺂¤”X–E«t޾г‚̃‚ƒfƒ‹ƒ}ƒEƒX‚Å‚ÍASlp2-a‚̈Ùí‚È”Œ»‚àŠÏŽ@‚³‚êA”X–E«t޾г”ǂƂ̊֘A«‚à–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½BjmƒŠƒ“ƒNn
14-3) Azouz, N. P., Zur, N., Efergan, A.,
Ohbayashi, N., Fukuda, M., Amihai, D., Hammel, I., Rothenberg, M. E. and
Sagi-Eisenberg, R. (2014) Rab5 is a novel regulator of mast cell secretory
granules: impact on size, cargo and exocytosis. J. Immunol. 192, 4043-4053 [PubMed]
(•\ކ‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)
14-4) Ishida, M.,
Arai, S. P., Ohbayashi, N. and Fukuda, M. (2014) The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome
transport in melanocytes through trapping of Rab27A effector protein
Slac2-a/melanophilin in their cytosol: Development of a novel
melanosome-targeting tag. J. Biol. Chem. 289,
11059-11067 [PubMed]iƒƒ‰ƒmƒ\[ƒ€‚̓ƒ‰ƒjƒ“F‘f‚ð‡¬E’™‘ ‚·‚é“ÁŽê‚ȃIƒ‹ƒKƒlƒ‰‚Å‚·Bƒƒ‰ƒmƒ\[ƒ€‚Å‹@”\‚·‚镪Žq‚̓ƒ‰ƒmƒ\[ƒ€‚É“ÁˆÙ“I‚É—A‘—‚³‚ê‚é•K—v‚ª‚ ‚è‚Ü‚·‚ªA‚±‚ê‚܂Ńƒ‰ƒmƒ\[ƒ€‚Ö‚Ì—A‘—ƒVƒOƒiƒ‹‚͂قƂñ‚Ç•ª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAƒƒ‰ƒmƒ\[ƒ€‚Ì”÷¬ŠÇ‹ts«—A‘—‚ð§Œä‚·‚郃‰ƒmƒŒƒMƒ…ƒŠƒ“•ªŽq‚ð‰ü•Ï‚µA”CˆÓ‚Ì•ªŽq‚ð¬nƒƒ‰ƒmƒ\[ƒ€‚É•t’…‚³‚¹‚éV‹Kƒ^ƒO(MST, melanosome-targeting tag)‚ðŠJ”‚·‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn
14-5) Takano, T.,
Urushibara, T., Yoshioka, N., Saito, T., Fukuda, M., Tomomura, M. and Hisanaga,
S. (2014) LMTK1 regulates dendritic formation by
regulating movement of Rab11A-positive endosomes. Mol. Biol. Cell 25, 1755-1768 [PubMed]
14-6) Matsui, T.,
Noguchi, K. and Fukuda, M. (2014) Dennd3 functions as
a guanine nucleotide exchange factor for small GTPase Rab12 in mouse embryonic
fibroblasts. J. Biol. Chem. 289, 13986-13995 [PubMed]iRab12‚Í×–E–Œã‚̃Aƒ~ƒmŽ_ƒgƒ‰ƒ“ƒXƒ|[ƒ^[PAT4‚Ì•ª‰ð‚ð§Œä‚·‚邱‚Æ‚Å×–E“àƒAƒ~ƒmŽ_—Ê‚ð’²ß‚µAmTORC1‚ÌŠˆ«‰»‚âƒI[ƒgƒtƒ@ƒW[‚̧Œä‚ÉŠÖ—^‚·‚邱‚Æ‚ª‚±‚ê‚܂łɖ¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚·‚ªARab12‚ª‚ǂ̂悤‚ÉŠˆ«‰»‚³‚ê‚é‚Ì‚©‚Æ‚¢‚Á‚½Žž‹óŠÔ“I‚ȧŒäŠî”Õ‚Í–¢‚¾‰ð–¾‚³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍARab12‚Ìã—¬‚Ɉʒu‚·‚銈«‰»ˆöŽq‚Æ‚µ‚ÄDennd3‚Æ‚¢‚¤’`”’Ž¿‚𓯒肵A‚»‚Ì‹@”\‰ðÍ‚ðs‚¢‚Ü‚µ‚½Bj
14-7) Sugeno, N.,
Hasegawa, T., Tanaka, N., Fukuda, M., Wakabayashi, K., Oshima, R., Konno, M.,
Miura, E., Kikuchi, A., Baba, T., Anan, T., Nakao, M., Geisler, S., Aoki, M.
and Takeda, A. (2014) Lys-63-linked ubiquitination by
E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized
ƒ¿-synuclein. J. Biol.
Chem. 289, 18137-18151 [PubMed]
14-8) Kobayashi,
H., Etoh, K. and Fukuda, M. (2014) Rab35 is translocated from Arf6-positive
perinuclear recycling endosomes to neurite tips during neurite outgrowth. Small GTPases 5, e29290 [PubMed]iRab35‚Í_Œo¬’·ˆöŽqiNGFjˆË‘¶“I‚È_Œo“Ë‹NL’·‚É•s‰ÂŒ‡‚ȈöŽq‚ÅANGFŽhŒƒŒã‚ÉƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ÉWÏ‚·‚邱‚Æ‚ª‚±‚ê‚܂Ŗ¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚·B¡‰ñŽ„’B‚ÍA_Œo“Ë‹NŒ`¬Œã‚ÌRab35‚Ì“®‘Ô‚ð‰ðÍ‚µARab35‚ªƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç_Œo“Ë‹N‚Ìæ’[‚Ɉړ®‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B‚±‚ê‚ç‚ÌŒ‹‰Ê‚©‚çARab35‚ÍƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚ç_Œo“Ë‹N‚Ìæ’[‚ւ̬–E—A‘—‚ð‘£i‚µA‰½‚ç‚©‚Ì•ªŽq‚ð“Ë‹N‚Ìæ’[‚É‹Ÿ‹‹‚µ‚Ä‚¢‚é‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚·Bj
14-9) Mori, Y.,
Fukuda, M. and Henley, J. M. (2014) Small GTPase Rab17 regulates the surface
expression of kainate receptors but not ƒ¿-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in
hippocampal neurons via dendritic trafficking of Syntaxin-4 protein. J. Biol. Chem. 289, 20773-20787 [PubMed]i‰p‘ƒuƒŠƒXƒgƒ‹‘åŠw‚É—¯Šw‚µ‚½X–õ“T”ŽŽm‚Ƃ̋¤“¯Œ¤‹†‚ÅAŽ÷ó“Ë‹N‚É“ÁˆÙ“I‚É‹ÇÝ‚·‚éRab17‚ªƒVƒ“ƒ^ƒLƒVƒ“4‚Ì—A‘—‚ð‰î‚µ‚ÄAƒJƒCƒjƒ“Ž_Žó—e‘Ì‚Ì×–E•\–ʂւ̔Œ»‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
14-10) Nishiyama, H., Koizumi, M., Ogawa, K., Kitamura, S., Konyuba, Y., Watanabe, Y. Ohbayashi, N., Fukuda, M., Suga, M. and Sato, C. (2014) Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications. Ultramicroscopy 147, 86-97 [PubMed]
14-11) Kobayashi,
H., Etoh, K., Ohbayashi, N. and Fukuda, M. (2014) Rab35 promotes the
recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1
during neurite outgrowth. Biol. Open
3, 803-814
[PubMed]iRab35‚Í_Œo¬’·ˆöŽqiNGFjˆË‘¶“I‚ÉƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ÉMICAL-L1‚Ȃǂ̃GƒtƒFƒNƒ^[•ªŽq‚ðƒŠƒNƒ‹[ƒg‚·‚邱‚Ƃɂæ‚èA_Œo“Ë‹N‚ÌL’·‚ð‘£i‚µ‚Ü‚·B¡‰ñŽ„’B‚ÍAMICAL-L1‚ªRab35‚¾‚¯‚łȂ•¡”‚ÌRab‚ÆŒ‹‡‚·‚邱‚Ƃɒ…–Ú‚µARab35-MICAL-L1‚ªƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‚³‚ç‚ÉRab8, Rab13, Rab36‚ðWÏ‚³‚¹‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½iuRabƒNƒ‰ƒXƒ^[‰»v‚Æ–½–¼jB‚±‚ê‚ç‚ÌRab‚Í‚³‚ç‚ÉJIP4‚Ȃǂ̓ÁˆÙ“I‚ȃGƒtƒFƒNƒ^[•ªŽq‚ðƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ɌĂў‚Þ‚±‚Æ‚ÅA_Œo“Ë‹N•ûŒü‚ւ̬–E—A‘—‚ð‘£i‚·‚é‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚µ‚½Bj
14-12) Arango
Duque, G., Fukuda, M., Turco, S. J., Stäger, S. and Descoteaux, A. (2014) Leishmania
promastigotes induce cytokine secretion in macrophages through the degradation
of Synaptotagmin XI. J. Immunol. 193, 2363-2372 [PubMed]
14-13) Nishikimi,
A., Ishihara, S., Ozawa, M., Etoh, K., Fukuda, M., Kinashi, T. and
Katagiri, K. (2014) Rab13 acts downstream of the kinase Mst1 to deliver the
integrin LFA-1 to the cell surface for lymphocyte trafficking. Sci. Signal. 7, ra72 [PubMed]
14-14) McGough, I.
J., Steinberg, F., Gallon, M., Yatsu, A., Ohbayashi, N., Heesom, K., Fukuda, M.
and Cullen, P. J. (2014) Identification of molecular heterogeneity in
SNX27-retromer-mediated endosome-to-plasma membrane recycling. J. Cell Sci. 127, 4940-4953 [PubMed]iIn this issue‚É‘I’èjiŒfÚŒã‚ÍMost-read
Articles‚É‚à“ü‚è’…–Ú‚³‚ê‚Ü‚µ‚½Ij
14-15) Gallo, L. I., Liao, Y., Ruiz, W. G., Clayton,
D. R., Li, M., Liu, Y.-J., Jiang, Y., Fukuda, M., Apodaca, G. and Yin, X.-M.
(2014) TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized
MDCK cells. Mol. Biol. Cell 25, 3779-3797 [PubMed]iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
i2013”Nj
13-1) Onoue, K., Jofuku, A., Ban-Ishihara, R.,
Ishihara, T., Maeda, M., Koshiba, T., Itoh, T., Fukuda, M., Otera, H., Oka, T.,
Takano, H., Mizushima, N., Mihara, K. and Ishihara, N. (2013) Fis1 acts as a
mitochondrial recruitment factor for TBC1D15 that is involved in regulation of
mitochondrial morphology. J. Cell Sci. 126, 176-185 [PubMed]iIn this issue‚É‘I’èj
13-2) Nagai, H., Yasuda, S., Ohba, Y., Fukuda, M.
and Nakamura, T. (2013) All members of the EPI64 subfamily of TBC/RabGAPs also
have GAP activities toward Ras. J. Biochem.
153, 283-288 [PubMed]
13-3) Arango Duque, G., Fukuda, M. and Descoteaux,
A. (2013) Synaptotagmin XI regulates phagocytosis and cytokine secretion in
macrophages. J. Immunol. 190,
1737-1745 [PubMed]
13-4) Mori, Y., Matsui, T. and Fukuda, M. (2013)
Rabex-5 protein regulates dendritic localization of small GTPase Rab17 and
neurite morphogenesis in hippocampal neurons. J. Biol. Chem.
288, 9835-9847 [PubMed]iŽ„’B‚Í‚±‚ê‚܂Ŏ÷ó“Ë‹N‚݂̂ɋÇÝ‚µAŽ÷ó“Ë‹N‚ÌŒ`‘ÔŒ`¬‚âƒ|ƒXƒgƒVƒiƒvƒX‚ÌŒ`¬‚ÉŠÖ—^‚·‚éRab17‚𓯒肵‚Ä‚¢‚Ü‚·‚ªA‚»‚ÌŠˆ«‰»‹@\‚Í“ä‚É•ï‚Ü‚ê‚Ä‚¢‚Ü‚µ‚½B¡‰ñŽ„’B‚ÍARab17‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚ÄRabex-5‚ðŒ©o‚·‚±‚ƂɬŒ÷‚µ‚Ü‚µ‚½BRabex-5‚ÍRab5, Rab17‚ðŠÜ‚Þ•¡”‚ÌŠˆ«‰»ˆöŽq‚Æ‚µ‚Äì—p‚µAŽ÷ó“Ë‹N‚݂̂Ȃ炸A޲õ‚ÌŒ`‘ÔŒ`¬‚É‚àŠÖ—^‚·‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½Bj
13-5) Matsui, T. and Fukuda, M. (2013) Rab12
regulates mTORC1 activity and autophagy through controlling the degradation of
amino-acid transporter PAT4. EMBO Rep.
14, 450-457 [PubMed]iƒI[ƒgƒtƒ@ƒW[‚̓_ƒCƒiƒ~ƒbƒN‚È–Œ“®‘Ԃ𔺂¤×–E“à•ª‰ðŒn‚Å‚·‚ªARab•ªŽq‚ÌŠÖ—^‚Í–¢‚¾\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚̓}ƒEƒX‚É‘¶Ý‚·‚é‘S‚Ä‚ÌRab‚ð‘ÎÛ‚Æ‚µ‚½ƒmƒbƒNƒ_ƒEƒ“ŽÀŒ±‚É‚æ‚èAV‚½‚ȃI[ƒgƒtƒ@ƒW[§ŒäˆöŽq‚Æ‚µ‚ÄRab12‚𓯒肵‚Ü‚µ‚½BRab12‚Í×–E–Œã‚̃Aƒ~ƒmŽ_ƒgƒ‰ƒ“ƒXƒ|[ƒ^[PAT4‚Ì•ª‰ð‚ð§Œä‚·‚邱‚Ƃɂæ‚è×–E“àƒAƒ~ƒmŽ_—ʂ̒²ß‚ÉŠÖ—^‚µAmTORC1‚ÌŠˆ«‚ɉe‹¿‚ð—^‚¦‚邱‚ƂŊÔÚ“I‚ɃI[ƒgƒtƒ@ƒW[‚̧Œä‚ðs‚¤‚Æ‚¢‚¤V‹K‚Ì•ªŽq‹@\‚ð‰ð–¾‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNnihot off the press‚É‘I’èjiŒfÚŒã‚ÍTop
downlaods‚É‚à“ü‚è’…–Ú‚³‚ê‚Ü‚µ‚½Ij
13-6) Chiba, S., Amagai, Y., Homma, Y., Fukuda, M.
and Mizuno, K. (2013) NDR2-mediated Rabin8 phosphorylation is crucial for
ciliogenesis by switching binding specificity from phosphatidylserine to Sec15. EMBO J. 32,
874-885 [PubMed]
13-7) Yatsu, A., Ohbayashi, N., Tamura, K. and
Fukuda, M. (2013) Syntaxin-3 is required for melanosomal localization of Tyrp1
in melanocytes. J. Invest. Dermatol. 133, 2237-2246 [PubMed]iƒƒ‰ƒmƒ\[ƒ€‚Ì’†‚Ńƒ‰ƒjƒ“F‘f‚ð‡¬‚·‚邽‚߂ɂÍAƒƒ‰ƒjƒ“‡¬y‘f‚ðƒƒ‰ƒmƒ\[ƒ€‚Ì’†‚Ö—A‘—‚·‚é•K—v‚ª‚ ‚è‚Ü‚·‚ªA¬–E‚ʼn^‚΂ê‚Ä—ˆ‚½ƒƒ‰ƒjƒ“‡¬y‘f‚ª‚ǂ̂悤‚Ƀƒ‰ƒmƒ\[ƒ€‚Ɏ󂯓n‚³‚ê‚é‚Ì‚©‚Í‚±‚ê‚܂ŕª‚©‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚̓}ƒEƒX‚Ì”|—{ƒƒ‰ƒmƒTƒCƒg‚ð—p‚¢‚ÄA‚±‚̉ߒö‚É–Œ‚Ì—Z‡‘•’u‚Å‚ ‚éSNAREƒ^ƒ“ƒpƒNŽ¿syntaxin-3ASNAP23AVAMP7‚Ì•¡‡‘Ì‚ªŠÖ—^‚·‚邱‚Æ‚ð‰‚߂˾‚ç‚©‚É‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn
13-8) Kobayashi,
H. and Fukuda, M. (2013) Rab35 establishes the EHD1-association site by
coordinating two distinct effectors during neurite outgrowth. J. Cell Sci. 126, 2424-2435 [PubMed]i_Œo“Ë‹N‚ªL’·‚·‚邽‚߂ɂÍA×–E‘Ì‚©‚ç‚Ì–Œ‚â’`”’Ž¿‚Ì‹Ÿ‹‹‚ª•s‰ÂŒ‡‚ÅA‚±‚̉ߒö‚ɂ͒ᕪŽq—ÊG’`”’Ž¿Rab35‚ªd—v‚È–ðŠ„‚ð‰Ê‚½‚µ‚Ä‚¢‚Ü‚·‚ªA‚»‚ÌÚׂȋ@”\‚Í–¢‚¾–¾‚ç‚©‚ɂȂÁ‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍARab35‚ªcentaurin ƒÀ2‚ɉÁ‚¦AMICAL-L1‚Æ‚¢‚¤•ʂ̃GƒtƒFƒNƒ^[•ªŽq‚ðŠjŽü•Ó‚ÌƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ÉƒŠƒNƒ‹[ƒg‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½BRab35‚ð‚±‚ê‚ç‚Ì•ªŽq‚Ƃ̌‹‡‚ð’Ê‚µ‚ÄA•ªŽqƒnƒTƒ~imolecular
scissorsj‚ÌEHD1‚ª“‚ê‚ð’ñ‹Ÿ‚µA¬–E‚Ì‚‚Ñ‚è‚Æ‚è‚Æ“Ë‹N•ûŒü‚Ö‚Ì—A‘—‚𑣂·‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚µ‚½Bj
13-9) Fuchigami,
T., Sato, Y., Tomita, Y., Takano, T., Miyauchi, S., Tsuchiya, Y., Saito, T.,
Kubo, K., Nakajima, K., Fukuda, M., Hattori, M. and Hisanaga, S. (2013)
Dab1-mediated colocalization of multi-adaptor protein CIN85 with
Reelin-receptors, ApoER2 and VLDLR, in neurons. Genes Cells 18, 410-424 [PubMed]
13-10) Mori, Y.,
Matsui, T., Omote, D. and Fukuda, M. (2013) Small GTPase Rab39A interacts with
UACA and regulates the retinoic acid-induced neurite morphology of Neuro2A
cells. Biochem.
Biophys. Res. Commun. 435,
113-119 [PubMed]iRab39‚Í“®•¨ŠE‚ÉL‚•Û‘¶‚³‚ꂽRabƒAƒCƒ\ƒtƒH[ƒ€‚ÅAšM“û“®•¨‚Å‚ÍRab39A‚ÆRab39B‚Ì“ñŽí—Þ‚ª‘¶Ý‚µ‚Ä‚¢‚Ü‚·BRab39B‚̕ψق̓qƒg‚ÌX˜A½¸_’x‰„‚ðˆø‚«‹N‚±‚µ‚Ü‚·‚ªA‚»‚̔ǂ̎d‘g‚݂͖¢‚¾‰ð–¾‚³‚ê‚Ä‚¢‚Ü‚¹‚ñB–{˜_•¶‚Å‚ÍARab39‚Ì_ŒoŒn‚É‚¨‚¯‚é–ðŠ„‚ð–¾‚ç‚©‚É‚·‚邽‚ßARab39‚É“ÁˆÙ“I‚ȃGƒtƒFƒNƒ^[•ªŽq‚Ì“¯’è‚ðŽŽ‚Ý‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊAUACA‚Æ‚¢‚¤•ªŽq‚ªRab39‚É“ÁˆÙ“I‚ÉŒ‹‡‚·‚邱‚ÆARab39A‚ÆUACA‚ÍNeuro2A×–E‚Ì_Œo“Ë‹N‚ÌŽ÷ó—lŒ`‘Ô‚ð§Œä‚·‚邱‚Æ‚ª–¾‚ç‚©‚ƂȂè‚Ü‚µ‚½Bj
13-11) Bar-Gill,
A. B., Efergan, A., Seger, R., Fukuda, M. and Sagi-Eisenberg, R. (2013) The
extra-cellular signal regulated kinases ERK1 and ERK2 segregate displaying
distinct spatiotemporal characteristics in activated mast cells. Biochim. Biophys.
Acta - Mol. Cell Res. 1833, 2070-2082 [PubMed]
13-12) Imai, A., Ishida, M., Fukuda, M., Nashida, T. and Shimomura, H. (2013)
MADD/DENN/Rab3GEP functions as a guanine nucleotide exchange factor for Rab27
during granule exocytosis of rat parotid acinar cells. Arch.
Biochem. Biophys. 536, 31-37 [PubMed]
13-13) Kobayashi, H. and Fukuda, M. (2013) Arf6, Rab11 and transferrin receptor
define distinct populations of recycling endosomes. Commun. Integr. Biol. 6,
e25036 [PubMed]iƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚Í×–E–Œã‚ÌŽó—e‘Ì’`”’Ž¿‚È‚Ç‚ÌƒŠƒTƒCƒNƒŠƒ“ƒO‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA_Œo“Ë‹N‚ÌL’·‚Ì‚½‚߂̖Œ‹Ÿ‹‹Œ¹‚Æ‚µ‚Ä‚à‹ß”N’–Ú‚ðW‚߂Ă¢‚Ü‚·BArf6ARab11Aƒgƒ‰ƒ“ƒXƒtƒFƒŠƒ“Žó—e‘Ì‚ÍƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚̃}[ƒJ[‚Æ‚µ‚Ä—Ç‚’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªAPC12×–E‚Ì_Œo“Ë‹NL’·‰ß’ö‚Å‚ÍA‚±‚ê‚ç‚̃}[ƒJ[‚ª‘S‚ˆÙ‚È‚é×–E“à‹ÇÝ‚ðŽ¦‚·‚±‚Æ‚ð–{˜_•¶‚ÅŒ©o‚µ‚Ü‚µ‚½BƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ɂ͋@”\‚̈قȂéƒTƒuƒhƒƒCƒ“‚ª‘¶Ý‚µA_Œo“Ë‹NL’·Žž‚É‚ÍAArf6—z«‚Ì’†S‘̋ߖT‚ÌƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚ªd—v‚È–ðŠ„‚ð‰Ê‚½‚·‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚·Bj
13-14) Ljubicic, S., Bezzi, P., Brajkovic, S.,
Nesca, V., Guay, C., Ohbayashi, N., Fukuda, M., Abderrahmani, A. and Regazzi,
R. (2013) The GTPase Rab37
participates in the control of insulin exocytosis. PLoS One 8, e68255 [PubMed]
13-15) Fujita, N., Morita, E., Itoh, T., Tanaka,
A., Nakaoka, M., Osada, Y., Umemoto, T., Saitoh, T., Nakatogawa, H., Kobayashi,
S., Haraguchi, T., Guan, J. L., Iwai, K., Tokunaga, F., Saito, K., Ishibashi,
K., Akira, S., Fukuda, M., Noda, T. and Yoshimori, T. (2013) Recruitment of the autophagic machinery to
endosomes during infection is mediated by ubiquitin. J.
Cell Biol. 203, 115-128 [PubMed]iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
i2012”Nj
12-1) Brozzi, F., Diraison, F., Lajus, S., Rajatileka, S., Philips, T.,
Regazzi, R., Fukuda, M., Verkade, P., Molnár, E. and
Varadi, A. (2012) Molecular mechanism of myosin Va recruitment to dense core
secretory granules. Traffic 13,
54-69 [PubMed]
12-2) Ohbayashi, N., Maruta, Y., Ishida, M. and
Fukuda, M. (2012) Melanoregulin regulates retrograde melanosome transport
through interaction with the RILP–p150Glued
complex in melanocytes. J. Cell Sci. 125, 1508-1518 [PubMed]iRab27A‚ðˆâ“`“I‚ÉŒ‡‘¹‚·‚郃‰ƒmƒTƒCƒg‚Å‚ÍAƒAƒNƒ`ƒ“ˆË‘¶«‚̃ƒ‰ƒmƒ\[ƒ€—A‘—áŠQ‚Ì‚½‚ßAƒƒ‰ƒmƒ\[ƒ€‚ªŠjŽü•Ó‚Å‹‚‹ÃW‚µ‚Ü‚·B–Ê”’‚¢‚±‚Æ‚ÉA‚±‚Ì‹ÃW‚Ídsuˆâ“`Žq‚Ì‚³‚ç‚Ȃ錇‘¹‚É‚æ‚背ƒXƒLƒ…[‚³‚êA³í‚È–ÑF‚ɖ߂邱‚Æ‚ªŒÃ‚‚©‚ç’m‚ç‚ê‚Ä‚¢‚Ü‚·B‚µ‚©‚µA‚»‚Ì•œ‹A‚Ì•ªŽq‹@\‚Í30”N‹ß‚‰ð–¾‚³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAdsu‚̈â“`ŽqŽY•¨Mreg‚ª‹ts«‚Ì”÷¬ŠÇƒ‚[ƒ^[‚Æ‘ŠŒÝì—p‚·‚邱‚Ƃɂæ‚èAŠjŽü•ӂɃƒ‰ƒmƒ\[ƒ€‚ð‹ÃW‚³‚¹‚Ä‚¢‚邱‚Æ‚ð‰‚߂ē˂«Ž~‚߂܂µ‚½BjmƒŠƒ“ƒNniIn this issue‚É‘I’èj
12-3) Ohbayashi, N., Yatsu, A., Tamura, K. and
Fukuda, M. (2012) The Rab21-GEF activity of Varp, but not its Rab32/38 effector
function, is required for dendrite formation in melanocytes. Mol. Biol. Cell
23, 669-678 [PubMed]iRab32/38‚̃GƒtƒFƒNƒ^[‚Æ‚µ‚Ä“¯’肳‚ꂽVarp•ªŽq‚É‚ÍARab32/38‚ðŒ‹‡‚·‚éANKR1ƒhƒƒCƒ“‚ɉÁ‚¦ARab21‚ðŠˆ«‰»‚·‚éVPS9ƒhƒƒCƒ“‚ª‘¶Ý‚µ‚Ü‚·B‚µ‚©‚µA‚±‚ê‚Ü‚ÅVPS9ƒhƒƒCƒ“‚̃ƒ‰ƒmƒTƒCƒg‚ł̋@”\‚Í–¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍA‚±‚ÌVPS9ƒhƒƒCƒ“‚ÉŽ÷ó“Ë‹N‚ÌŒ`¬‘£iì—p‚ª‚ ‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½B‚·‚Ȃ킿AVarp‚Í•ªŽq“à‚É‘¶Ý‚·‚é“ñ‚‚ÌRabƒVƒOƒiƒŠƒ“ƒOƒhƒƒCƒ“iANKR1ƒhƒƒCƒ“‚ÆVPS9ƒhƒƒCƒ“j‚Ì‹@”\‚ðŽg‚¢•ª‚¯‚邱‚Ƃɂæ‚èAuƒƒ‰ƒjƒ“‡¬y‘f‚Ì—A‘—v‚ÆuŽ÷ó“Ë‹N‚ÌŒ`¬v‚Æ‚¢‚¤“ñ‚‚̈قȂé—A‘—ƒvƒƒZƒX‚ð§Œä‚·‚鑽‹@”\•ªŽq‚Å‚ ‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½jmƒŠƒ“ƒNn
12-4) Chesneau, L., Dambournet, D., Machicoane,
M., Kouranti, I., Fukuda, M., Goud, B. and Echard, A. (2012) An ARF6/Rab35
GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol.
22, 147-153 [PubMed]
12-5) Kobayashi, H. and Fukuda, M. (2012) Rab35
regulates Arf6 activity through centaurin-ƒÀ2 (ACAP2) during neurite
outgrowth. J.
Cell Sci. 125, 2235-2243 [PubMed]i_Œoƒlƒbƒgƒ[ƒN‚ð\’z‚·‚邽‚߂ɂÍA_Œo×–E‚ª³‚µ‚_Œo“Ë‹N‚ðL‚΂·‚±‚Æ‚ª•s‰ÂŒ‡‚Å‚·B¡‰ñŽ„’B‚ÍARab35‚Æ‚»‚̃GƒtƒFƒNƒ^[•ªŽqcentaruin ƒÀ2‚ªAŠjŽü•Ó‚ÌƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚É‘¶Ý‚·‚éArf6‚ð•sŠˆ«‰»‚·‚邱‚Ƃɂæ‚èA_Œo“Ë‹N‚ÌL’·‰ß’ö‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B“ñŽí—ނ̈قȂé’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿ARab35‚ÆArf6‚ÌV‚½‚ȃNƒƒXƒg[ƒN‚Ì”Œ©‚Å‚·IjiIn this
issue‚É‘I’èj
12-6) Mori, Y., Matsui, T., Furutani, Y.,
Yoshihara, Y. and Fukuda, M. (2012) Small GTPase Rab17
regulates dendritic morphogenesis and postsynaptic development of hippocampal
neurons. J.
Biol. Chem. 287,
8963-8973 [PubMed]iŽ„’B‚Ì”]‚ð\¬‚·‚é_Œo×–E‚ÍA޲õ‚ÆŽ÷ó“Ë‹N‚ðL‚΂µAƒVƒiƒvƒX‚ðŒ`¬‚·‚邱‚Ƃɂæ‚è_Œo×–E‚̃lƒbƒgƒ[ƒN‚ðŒ`¬‚µ‚Ä‚¢‚Ü‚·B޲õ•ûŒü‚ɂ͎²õ‚ł݂̂ŋ@”\‚·‚镪ŽqAŽ÷ó“Ë‹N‚ɂ͎÷ó“Ë‹N‚ł݂̂ŋ@”\‚·‚镪Žq‚ð—A‘—‚·‚邱‚Æi‹É«—A‘—j‚ª•s‰ÂŒ‡‚Å‚·‚ªA‚±‚ê‚܂ł»‚Ì•ªŽq‹@\‚Í\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAŽ÷ó“Ë‹N‚݂̂ɋÇÝ‚·‚éV‹KRab‚Æ‚µ‚ÄRab17‚𓯒肷‚邱‚ƂɬŒ÷‚µ‚Ü‚µ‚½BRab17‚ÍfilopodiaŒ`¬‚ð’Ê‚µ‚ÄAŽ÷ó“Ë‹N‚âƒXƒpƒCƒ“‚ÌŒ`¬‚ÉŠÖ—^‚·‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½BjiFaculty of 1000‚ÌRecommended
paper‚Æ‚µ‚Ä‘I’èj
12-7) Gao, J., Takeuchi, H., Zhang, Z., Fukuda, M.
and Hirata, M. (2012) Phospholipase
C-related but catalytically inactive protein (PRIP) modulates
synaptosomal-associated protein 25 (SNAP-25) phosphorylation and exocytosis. J. Biol. Chem.
287,
10565-10578 [PubMed]
12-8) Takano, T., Tomomura, M., Yoshioka, N.,
Tsutsumi, K., Terasawa, Y., Saito, T., Kawano, H., Kamiguchi, H., Fukuda, M.
and Hisanaga, S. (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth
that acts via Rab11 in a Cdk5-dependent manner. J. Neurosci. 32, 6587-6599 [PubMed]
12-9) Ishida, M.,
Ohbayashi, N., Maruta, Y., Ebata, Y. and Fukuda, M. (2012) Functional involvement of Rab1A in
microtubule-dependent anterograde melanosome transport in melanocytes. J. Cell Sci. 125, 5177-5187 [PubMed]iƒƒ‰ƒmƒTƒCƒg‚Å‚ÍA”÷¬ŠÇ‚ƃAƒNƒ`ƒ“üˆÛ‚ɉˆ‚Á‚ăƒ‰ƒmƒ\[ƒ€‚ª×–E–ŒŽü•ӂ܂ŗA‘—‚³‚ê‚Ü‚·B‚±‚ê‚Ü‚ÅA”÷¬ŠÇã‚Ì‹ts«—A‘—‚ƃAƒNƒ`ƒ“—A‘—‚ÌŽd‘g‚݂̉𖾂ɬŒ÷‚µ‚Ä‚¢‚Ü‚·‚ªA”÷¬ŠÇã‚̇s«—A‘—‚ÌŽd‘g‚݂͒·‚ç‚–¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍA’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rabƒtƒ@ƒ~ƒŠ[‚ð–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚·‚邱‚Ƃɂæ‚èARab1A‚Æ‚¢‚¤‚±‚ê‚Ü‚ÅGolgi-ERŠÔ‚Ì—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚½RabƒAƒCƒ\ƒtƒH[ƒ€‚ª‡s«‚̃ƒ‰ƒmƒ\[ƒ€—A‘—‚ÉŠÖ—^‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½BjmƒŠƒ“ƒNniIn this issue‚É‘I’èj
12-10) Ishibashi,
K., Uemura, T., Waguri, S. and Fukuda, M. (2012) Atg16L1, an essential factor for canonical
autophagy, participates in hormone secretion from PC12 cells independently of
autophagic activity. Mol. Biol. Cell 23, 3193-3202 [PubMed][USACO]iÅ‹ßAƒI[ƒgƒtƒ@ƒW[‚Æ•ª”å§Œä‚ÌŠÖ˜A«‚ªŽ¦´‚³‚ê‚Ä‚¢‚Ü‚·‚ªAƒI[ƒgƒtƒ@ƒW[§ŒäˆöŽq‚É‚æ‚镪”å‚̧Œä‹@\‚Í—Ç‚•ª‚Á‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAŠu—£–Œ‚ÌL’·‚É•K{‚̈öŽqAtg16L1‚ªRab33A‚ÆŒ‹‡‚·‚邱‚Ƃɂæ‚èAPC12×–E‚̃zƒ‹ƒ‚ƒ“è÷—±ã‚É‹ÇÝ‚µAƒI[ƒgƒtƒ@ƒW[Šˆ«‚Ƃ͖³ŠÖŒW‚Ƀzƒ‹ƒ‚ƒ“•ª”å‚ð§Œä‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
12-11) Yasuda, T.,
Saegusa, C., Kamakura, S., Sumimoto, H. and Fukuda, M. (2012) Rab27 effector Slp2-a transports the apical
signaling molecule podocalyxin to the apical surface of MDCK II cells and
regulates claudin-2 expression. Mol.
Biol. Cell 23, 3229-3239 [PubMed][USACO]iRab27ƒGƒtƒFƒNƒ^[Slp2-a‚̓ƒ‰ƒmƒTƒCƒg‚ł̋@”\‚ª—Ç‚’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªAã”ç×–E‚Å‚à”Œ»‚ªŒ©‚ç‚ê‚Ü‚·B¡‰ñŽ„’B‚ÍA‹É«‰»‚µ‚½MDCK×–E‚ÅSlp2-a‚̃^ƒ“ƒpƒNŽ¿—Ê‚ªŒ°’˜‚É㸂·‚邱‚ÆASlp2-a–Rab27A‚ªƒVƒOƒiƒ‹•ªŽqEpodocalyxin‚ð’¸’[•”×–E–Œ‚É—A‘—‚µAMAPKƒVƒOƒiƒ‹Œn‚ðŠˆ«‰»‚µ‚Ä–§’…Œ‹‡‚ðŒ`¬‚·‚éclaudin-2‚Ì”Œ»‚ð—U“±‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
12-12) Matsui, T.,
Ohbayashi, N. and Fukuda, M. (2012) The Rab
interacting lysosomal protein (RILP) homology domain functions as a novel
effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome
transport in melanocytes. J.
Biol. Chem. 287, 28619-28631 [PubMed]i’ᕪŽq—ÊGƒ^ƒ“ƒpƒNŽ¿Rab‚ÍšM“û“®•¨‚É60Ží—Þ‹ß‚‘¶Ý‚·‚邽‚ßA‘½‚‚ÌRabƒAƒCƒ\ƒtƒH[ƒ€‚Ì‹@”\‚Í–¢‚¾\•ª‚ɉ𖾂³‚ê‚Ä‚¢‚Ü‚¹‚ñB¡‰ñŽ„’B‚ÍA‹@”\–¢’m‚ÌRab36‚Æ‚¢‚¤ƒAƒCƒ\ƒtƒH[ƒ€‚É’…–Ú‚µA‚»‚̃GƒtƒFƒNƒ^[•ªŽq‚Ì’Tõ‚ðs‚¢‚Ü‚µ‚½BRab36Œ‹‡•ªŽq‚Ì‘½‚‚ÍRILP homology domain (RHD)‚Æ–½–¼‚µ‚½—̈æ‚ðŠÜ‚ñ‚Å‚¨‚èA‚±‚ÌRHD‚ÉGTPŒ^‚ÌRab36‚ªŒ‹‡‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½B‚Ü‚½Aƒƒ‰ƒmƒTƒCƒg‚ð—p‚¢‚½‰ðÍ‚©‚çARab36‚ÍRILP‚ð‰î‚µ‚ă_ƒCƒjƒ“-ƒ_ƒCƒiƒNƒ`ƒ“ƒ‚[ƒ^[‚Æ•¡‡‘Ì‚ðŒ`¬‚µAƒƒ‰ƒmƒ\[ƒ€‚Ì”÷¬ŠÇ‹ts«—A‘—‚ð§Œä‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
12-13) Azouz, N.
P., Matsui, T., Fukuda, M. and Sagi-Eisenberg, R. (2012) Decoding the regulation of mast cell exocytosis by
networks of Rab GTPases. J.
Immunol. 189, 2169-2180 [PubMed]
12-14) Zografou,
S., Basagiannis, D., Papafotika, A., Shirakawa, R., Horiuchi, H., Auerbach, D.,
Fukuda, M. and Christoforidis, S. (2012) A complete Rab screening reveals novel insights in Weibel–Palade body exocytosis. J. Cell Sci. 125, 4780-4790 [PubMed]iIn this issue‚É‘I’èj
12-15) Gálvez-Santisteban, M., Rodriguez-Fraticelli, A. E.,
Bryant, D. M., Vergarajauregui, S., Yasuda, T., Bañón-Rodríguez, I., Bernascone,
I., Datta, A., Spivak, N., Young, K., Slim, C. L., Brakeman, P. R., Fukuda, M.,
Mostov, K. E. and Martín-Belmonte, F. (2012) Synaptotagmin-like proteins control the formation of a single apical
membrane domain in epithelial cells. Nature
Cell Biol. 14, 838-849 [PubMed]
12-16) Yoshida-Amano,
Y., Hachiya, A., Ohuchi, A., Kobinger, G. P., Kitahara, T., Takema, Y. and
Fukuda, M. (2012) Essential role of RAB27A in determining
constitutive human skin color. PLoS
One 7, e41160 [PubMed]i‰Ô‰¤Š”Ž®‰ïŽÐ‚Ƃ̋¤“¯Œ¤‹†‚ÅAlŽí‚É‚æ‚é”§‚ÌF‚̈Ⴂ‚ÌŒ´ˆö‚ɂ‚¢‚Ä’²‚ׂ܂µ‚½B•l—R—ˆ‚̃ƒ‰ƒmƒTƒCƒg‚Å‚àA”’l—R—ˆ‚̃ƒ‰ƒmƒTƒCƒg‚Å‚àƒƒ‰ƒjƒ“‡¬y‘f‚Ì”Œ»—ʂɂͷ‚ª‚ ‚è‚Ü‚¹‚ñ‚ªAƒƒ‰ƒmƒ\[ƒ€‚Ì—A‘—‚É•K{‚̈öŽqRab27A‚Ì”Œ»—ʂɗLˆÓ‚È·‚ª”F‚ß‚ç‚ê‚Ü‚µ‚½B‚·‚Ȃ킿A•l—R—ˆ‚̃ƒ‰ƒmƒTƒCƒg‚Å‚ÍARab27A‚Ì”Œ»‚ª‚‚ƒƒ‰ƒmƒ\[ƒ€‚Ì—A‘—Šˆ«‚ª‚‚¢‚½‚ß‚ÉA‘½‚‚̃ƒ‰ƒmƒ\[ƒ€‚ªƒPƒ‰ƒ`ƒmƒTƒCƒg‚Ɏ󂯓n‚³‚ê‚é‚à‚Ì‚Æl‚¦‚ç‚ê‚Ü‚·Bj
12-17) Nagahama,
M., Umezaki, M., Tashiro, R., Oda, M., Kobayashi, K., Shibutani, M., Takagishi,
T., Ishidoh, K., Fukuda, M. and Sakurai, J. (2012) Intracellular
trafficking of Clostridium perfringens
iota-toxin b. Infect.
Immun. 80, 3410-3416 [PubMed]
12-18) Nakazawa,
H., Sada, T., Toriyama, M., Tago, K., Sugiura, T., Fukuda, M. and Inagaki, N. (2012) Rab33a mediates anterograde vesicular transport
for membrane exocytosis and axon outgrowth. J. Neurosci. 32,
12712-12725 [PubMed]
(•\ކ‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)mƒŠƒ“ƒNn
i2011”Nj
11-1) Tamura,
K., Ohbayashi, N., Ishibashi, K. and Fukuda, M. (2011) Structure-function
analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of
tyrosinase-related protein 1 in melanocytes. J. Biol. Chem. 286, 7507-7521 [PubMed]iƒƒ‰ƒjƒ“‡¬y‘fƒ`ƒƒVƒi[ƒ[ŠÖ˜A’`”’Ž¿1(Tyrp1)‚Ì—A‘—‚É‚¨‚¯‚éVarp•ªŽq‚ÌŠeƒhƒƒCƒ“‚Ì‹@”\‚𖾂炩‚É‚·‚邽‚ßA\‘¢‹@”\‘ŠŠÖ‚ÉŠÖ‚·‚錤‹†‚ðs‚¢‚Ü‚µ‚½BTyrp1‚Ì—A‘—‚É‚ÍVarp•ªŽq‚ÌRab32/38Œ‹‡”\‹y‚ÑVAMP7Œ‹‡”\‚ª•K{‚Å‚ ‚邪AVPS9ƒhƒƒCƒ“‚ÌRab21-GEFŠˆ«‚Í•K—v‚È‚¢‚±‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½Bj
11-2) Itoh, T., Kanno, E., Uemura, T., Waguri, S. and Fukuda, M. (2011) OATL1,
a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation.
J. Cell Biol.
192, 839-853 [PubMed]i‹ß”NRab‚Ì•sŠˆ«‰»ˆöŽq‚Æ‚µ‚Ä’–Ú‚³‚ê‚Ä‚¢‚éTBC’`”’Ž¿‚ÍAƒqƒg‚âƒ}ƒEƒX‚É‚Í40Ží—ÞˆÈã‘¶Ý‚µ‚Ü‚·‚ªA‚»‚ê‚ç‚ÌÚׂȋ@”\‚͂قƂñ‚Ç•ª‚Á‚Ä‚¢‚Ü‚¹‚ñB–{˜_•¶‚Å‚ÍAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚É‹ÇÝ‚·‚éTBC’`”’Ž¿‚Ì–Ô—…“I‚ȉðÍ‚ðs‚¢AOATL1/TBC1D25‚ªLC3/Atg8ˆË‘¶“I‚ɃI[ƒgƒtƒ@ƒSƒ\[ƒ€‚ÉƒŠƒNƒ‹[ƒg‚µAƒI[ƒgƒtƒ@ƒSƒ\[ƒ€‚̬n‰ß’ö‚ÉŠÖ—^‚·‚邱‚Æ‚ð‰‚߂ē˂«Ž~‚߂܂µ‚½Bj
11-3) Matsuoka, H., Harada, K., Nakamura, J., Fukuda, M. and
Inoue, M. (2011) Differential distribution of synaptotagmin-1, -4, -7, and -9
in rat adrenal chromaffin cells. Cell Tissue Res. 344,
41-50 [PubMed]
11-4) Beaumont, K. A., Hamilton, N. A., Moores, M. T., Brown, D. L.,
Ohbayashi, N., Cairncross, O., Cook, A. L., Smith, A. G., Misaki, R., Fukuda,
M., Taguchi, T., Sturm, R. A. and Stow, J. L. (2011) The recycling endosome
protein Rab17 regulates melanocytic filopodia formation and melanosome
trafficking. Traffic
12, 627-643 [PubMed]
11-5) Sasakawa, N., Ohara-Imaizumi, M., Fukuda, M., Kabayama, H., Mikoshiba,
K. and Kumakura, K. (2011) Dissociation of inositol polyphosphates from the C2B
domain of synaptotagmin facilitates spontaneous release of catecholamines in
adrenal chromaffin cells: A suggestive evidence of a fusion clamp by
synaptotagmin. Neuropharmacology
60, 1364-1370 [PubMed]
11-6) Egami, Y., Fukuda, M. and
Araki, N. (2011) Rab35 regulates phagosome formation through recruitment of
ACAP2 in macrophages during FcƒÁR-mediated phagocytosis. J.
Cell Sci. 124, 3557-3567 [PubMed] iIn this
issue‚É‘I’èj
11-7) Vinet, A. F., Jananji, S.,
Turco, S. J., Fukuda, M. and Descoteaux, A. (2011) Exclusion of synaptotagmin V
at the phagocytic cup by Leishmania
donovani lipophosphoglycan results in decreased promastigote
internalization. Microbiology 157, 2619-2628 [PubMed]
11-8) Matsui, T., Itoh, T. and
Fukuda, M. (2011) Small GTPase Rab12 regulates constitutive degradation of
transferrin receptor. Traffic 12, 1432-1443 [PubMed]i×–E–Œã‚ÌŽó—e‘Ì’`”’Ž¿‚ÍƒŠƒKƒ“ƒh‚ªŒ‹‡‚·‚邯זE“à‚ÉŽæ‚螂܂êAˆê•”‚ÌŽó—e‘Ì‚ÍƒŠƒTƒCƒNƒŠƒ“ƒOŒo˜H‚É‚æ‚èÄ‚Ñ×–E–Œ‚Ö‚Æ—A‘—‚³‚ê‚Ü‚·B‚µ‚©‚µAƒgƒ‰ƒ“ƒXƒtƒFƒŠƒ“Žó—e‘Ì‚È‚ÇƒŠƒTƒCƒNƒŠƒ“ƒOŒo˜H‚ÅÄ—˜—p‚³‚ê‚éŽó—e‘̂̕iŽ¿ŠÇ—‹@\‚Í‚±‚ê‚܂łقƂñ‚Ç–¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍA‚±‚ê‚܂ŋ@”\‚ª–¾‚ç‚©‚ł͂Ȃ©‚Á‚½Rab12‚ªƒgƒ‰ƒ“ƒXƒtƒFƒŠƒ“Žó—e‘Ì‚ðƒŠƒ\ƒ\[ƒ€‚É—A‘—‚µPí“I‚É•ª‰ð‚·‚邱‚Æ‚ðŒ©‚¢o‚µ‚Ü‚µ‚½BƒŠƒTƒCƒNƒŠƒ“ƒOƒGƒ“ƒhƒ\[ƒ€‚©‚烊ƒ\ƒ\[ƒ€‚É—A‘—‚·‚éŒo˜H‚Í‹³‰È‘‚É‚à‹LÚ‚³‚ê‚Ä‚¢‚È‚¢V‹KŒo˜H‚ÅA¡Œã‚ÌX‚Ȃ锓W‚ªŠú‘Ò‚³‚ê‚Ü‚·Bj
11-9) Fukuda, M., Kobayashi, H., Ishibashi, K. and
Ohbayashi, N. (2011) Genome-wide investigation of the Rab binding activity of
RUN domains: Development of a novel tool that specifically traps GTP-Rab35. Cell
Struct. Funct. 36, 155-170 [PubMed]iƒqƒg‚̃Qƒmƒ€ã‚É‚ÍA’ᕪŽq—ÊG’`”’Ž¿Rab‚Ƃ̊֘A«‚ªŽ¦´‚³‚ê‚Ä‚¢‚é‹@”\–¢’m‚̃hƒƒCƒ“‚ª‘½”‘¶Ý‚µ‚Ä‚¢‚Ü‚·BRUNƒhƒƒCƒ“‚à‚»‚̈ê‚‚ÅARabƒGƒtƒFƒNƒ^[Œó•â‚Æl‚¦‚ç‚ê‚Ä‚¢‚Ü‚µ‚½‚ªA‚±‚ê‚Ü‚Å\•ª‚ÈŒŸØ‚Ís‚í‚ê‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B¡‰ñŽ„’B‚ÍAƒqƒg‚É‘¶Ý‚·‚é‘S‚Ä‚ÌRUNƒhƒƒCƒ“‚ð‘ÎÛ‚ÉRab‚ÌŒ‹‡Šˆ«‚ð–Ô—…“I‚É’²‚×AV‚½‚ÈRabŒ‹‡ƒhƒƒCƒ“‚Ì“¯’è‚ðs‚¢‚Ü‚µ‚½B‚³‚ç‚ÉA‚»‚ÌŒ‹‰Ê‚ð‚à‚Æ‚ÉGTP-Rab35‚ÌV‹Kƒgƒ‰ƒbƒp[‚ÌŠJ”‚ɬŒ÷‚µ‚Ü‚µ‚½Bj
11-10) Zhang, L., Yu, K., Robert, K. W., DeBolt, K.
M., Hong, N., Tao, J.-Q., Fukuda, M., Fisher, A. B. and Huang, S. (2011) Rab38
targets to lamellar bodies and normalizes their sizes in lung alveolar type II
epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L461-L477 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
11-11) Imai, A.,
Yoshie, S., Ishibashi, K., Haga-Tsujimura, M., Nashida, T., Shimomura, H. and
Fukuda, M. (2011) EPI64 protein functions as a physiological GTPase-activating
protein for Rab27 protein and regulates amylase release in rat parotid acinar
cells. J. Biol.
Chem. 286, 33854-33862 [PubMed]i“ú–{Ž•‰È‘åŠwE¡ˆä‚ ‚©‚Ëæ¶‚̃Oƒ‹[ƒv‚Ƃ̋¤“¯Œ¤‹†‚ÅAލ‰º‘B‚©‚ç‚̃Aƒ~ƒ‰[ƒ[•ª”å‚É‚¨‚¯‚éRab27-GAPAEPI64‚Ì‹@”\‰ðÍ‚ðs‚¢‚Ü‚µ‚½B•ª”åŽhŒƒ‚Æ‹¤‚ÉEPI64‚ÌRab27-GAPŠˆ«‚ªã¸‚µARab27‚ª•sŠˆ«‰»‚³‚ê‚邱‚Æ‚ªƒAƒ~ƒ‰[ƒ[‚Ì•ª”å‚É•K{‚Å‚ ‚邱‚Æ‚ð‰‚߂ē˂«Ž~‚߂܂µ‚½Bj
11-12) Doi, H., Yoshida, K., Yasuda, T., Fukuda, M.,
Fukuda, Y., Morita, H., Ikeda, S.-I., Kato, R., Tsurusaki, Y., Miyake, N.,
Saitsu, H., Sakai, H., Miyatake, S., Shiina, M., Nukina, N., Koyano, S., Tsuji,
S., Kuroiwa, Y. and Matsumoto, N. (2011) Exome sequencing reveals a homozygous SYT14 mutation in adult-onset autosomal
recessive spinocerebellar ataxia with psychomotor retardation. Am. J. Hum. Genet.
89, 320-327 [PubMed]
11-13) Ishibashi, K., Fujita, N., Kanno, E., Omori, H.,
Yoshimori, T., Itoh, T. and Fukuda, M. (2011) Atg16L2, a novel isoform of mammalian
Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy 7, 1500-1513 [PubMed]iƒI[ƒgƒtƒ@ƒSƒ\[ƒ€i“Á‚ÉŠu—£–Œj‚ÌŒ`¬‚É•K{‚̈öŽqAAtg16L1‚Ì—ÞŽ—•ªŽq‚Æ‚µ‚Ăٓû“®•¨‚ɂ̂ݕۑ¶‚³‚ꂽAtg16L2‚𓯒肵‚Ü‚µ‚½BAtg16L2‚ÍAtg16L1‚Æ“¯—l‚ÉAtg12-5‚Æ•¡‡‘Ì‚ðŒ`¬‚·‚é‚É‚àŠÖ‚í‚炸AŠu—£–Œ‚ɂ͋ÇÝ‚¹‚¸A‹Q‰ì‰ž“š«‚̃I[ƒgƒtƒ@ƒW[‚ɂ͊֗^‚µ‚È‚¢‚Æ‚¢‚¤ˆÓŠO‚ÈŽ–ŽÀ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½BAtg16L1‚ÆAtg16L2‚Ì”äŠr‰ðÍ‚©‚çAAtg16L1‚̃Aƒ~ƒmŽ_229-242‚̗̈æ‚ɉ½‚ç‚©‚Ì–¢“¯’è‚̈öŽq‚ªŒ‹‡‚µAŠu—£–Œ‚Ö‚ÌAtg16L1‚Ì‹ÇÝ‚ð§Œä‚µ‚Ä‚¢‚é‰Â”\«‚ªŽ¦´‚³‚ê‚Ü‚µ‚½Bj
i2010”Nj
10-1) Tsuboi, T., Kitaguchi, T.,
Karasawa, S., Fukuda, M. and Miyawaki, A. (2010) Age-dependent preferential
dense-core vesicle exocytosis in neuroendocrine cells revealed by newly
developed monomeric fluorescent timer protein. Mol. Biol. Cell 21, 87-94 [PubMed] iA
Highlights from MBoC Selection‚É‘I’èj
10-2) Ostrowski,
M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C.
F., Schauer, K., Hume, A. N., Freitas, R. P., Goud, B., Benaroch, P., Hacohen,
N., Fukuda, M., Desnos, C., Seabra, M. C., Darchen, F., Amigorena, S., Moita,
L. F. and Thery, C. (2010) Rab27a and Rab27b control different steps of the
exosome secretion pathway. Nature Cell Biol. 12, 19-30 [PubMed]
10-3) Lico, D. T. P., Rosa, J. C., DeGiorgis, J. A., deVasconcelos,
E. J. R., Casaletti, L., Tauhata, S. B. F., Baqui, M. M. A., Fukuda, M.,
Moreira, J. E. and Larson, R. E. (2010) A novel 65 kDa RNA-binding protein in squid presynaptic
terminals. Neuroscience 166, 73-83 [PubMed]
10-4) Ko, H. W., Norman, R. X., Tran, J., Fuller,
K. P., Fukuda, M. and Eggenschwiler, J. T. (2010) Broad-minded links cell
cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev. Cell
18, 237-247 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
10-5) Kanno, E., Ishibashi, K., Kobayashi, H.,
Matsui, T., Ohbayashi, N. and Fukuda, M. (2010) Comprehensive screening for
novel Rab-binding proteins by GST
pull-down assay using 60 different mammalian Rabs. Traffic 11, 491-507 [PubMed]iƒ}ƒEƒX‚âƒqƒg‚É‘¶Ý‚·‚é60Ží—Þ‚ÌRabƒAƒCƒ\ƒtƒH[ƒ€‚ɑ΂·‚éƒGƒtƒFƒNƒ^[•ªŽq‚ðGST pull-down–@‚ÆŽ¿—Ê•ªÍ‚ð‘g‚݇‚킹‚Ä–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚µ‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊARab‚Æ‚»‚Ì•sŠˆ«‰»ˆöŽqGAP‚ÌŠÔ‚ÉV‚µ‚¢ƒ^ƒCƒv‚ÌŒ‹‡—lŽ®‚ª‘¶Ý‚·‚邱‚ÆiRab‚ÌŒ‹‡‚É‚æ‚é“Á’è‚̃Iƒ‹ƒKƒlƒ‰‚Ö‚ÌGAP‚ÌƒŠƒNƒ‹[ƒgj‚𖾂炩‚É‚µ‚Ü‚µ‚½B‚Ü‚½A‘S‚Ä‚ÌRab‚ð‘ÎÛ‚É–Ô—…“I‚ȉðÍ‚ðs‚Á‚½¢ŠE‚ʼn‚߂Ă̘_•¶‚Å‚·IjiTraffic
2010-2011‚Ìmost cited paper‚̈ê‚‚ɑI‚΂ê‚Ü‚µ‚½Ij
10-6) Schlager,
M. A., Kapitein, L. C., Grigoriev, I., Burzynski, G. M., Wulf, P. S., Keijzer,
N., de Graaff, E., Fukuda, M., Shepherd, I. T., Akhmanova, A. and Hoogenraad,
C. C. (2010) Pericentrosomal targeting of Rab6 secretory vesicles by
Bicaudal-D-related protein-1 (BICDR-1) regulates neuritogenesis. EMBO J.
29, 1637-1651 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
10-7) Sato, M.,
Mori, Y., Matsui, T., Aoki, R., Oya, M., Yanagihara, Y., Fukuda, M. and Tsuboi,
T. (2010) Role of the polybasic sequence in the Doc2ƒ¿ C2B domain in
dense-core vesicle exocytosis in PC12 cells. J. Neurochem. 114, 171-181 [PubMed]i“Œ‘åE’؈ä‹MŽi涂̃Oƒ‹[ƒv‚Ƃ̋¤“¯Œ¤‹†‚ÅADoc2ƒ¿C2BƒhƒƒCƒ“‚Ìt-SNAREŒ‹‡ƒTƒCƒg‚Ì’²ß«•ª”å‚É‚¨‚¯‚é–ðŠ„‚ð–¾‚ç‚©‚É‚µ‚Ü‚µ‚½BƒVƒ“ƒ^ƒLƒVƒ“1a^SNAP-25ƒwƒeƒƒ_ƒCƒ}[‚ÌŒ‹‡”\‚ðŒ‡‘¹‚·‚éDoc2ƒ¿(KQ)•ψّ̂ðPC12×–E‚É”Œ»‚·‚邯A×–E–Œã‚Ì•ª”åè÷—±”‚ªŒ¸‚·‚邯‚Æ‚à‚ÉA‚»‚ÌŠJŒû•úo”‚ªŒ°’˜‚ÉŒ¸‚·‚邱‚Æ‚ðŒ©o‚µ‚Ü‚µ‚½Bj
10-8) Ohbayashi, N., Mamishi, S., Ishibashi,
K., Maruta, Y., Pourakbari, B., Tamizifar, B., Mohammadpour, M., Fukuda, M. and
Parvaneh, N. (2010) Functional characterization of
two Rab27A
missense mutations found in Griscelli syndrome type 2. Pigment Cell
Melanoma Res. 23, 365-374 [PubMed]iƒ^ƒCƒv2Œ^ƒOƒŠƒZƒŠÇŒóŒQ‚ÌV‚µ‚¢ƒ~ƒXƒZƒ“ƒX•ψÙiRab27A(K22R)‹y‚Ñ(I44T)j‚̉ðÍ‚ðs‚¢‚Ü‚µ‚½BK22R•ψّ̂ÍGTPŒ‹‡”\‚ðŒ‡‘¹‚µA×–EŽ¿’†‚É‘¶Ý‚·‚邱‚ÆAI44T•ψâ‘̂̓ƒ‰ƒmƒ\[ƒ€ã‚É‘¶Ý‚·‚é‚É‚àŠÖ‚í‚炸ASlac2-a‚Ƃ̌‹‡‚Å‚«‚È‚¢‚½‚ß‚ÉAF‘fˆÙí‚ÌÇó‚ð’æ‚·‚邱‚Ƃ𖾂炩‚É‚µ‚Ü‚µ‚½Bj
10-9) Tsutsumi, K., Takano, T., Endo, R., Fukuda,
M., Ohshima, T., Tomomura, M. and Hisanaga, S. (2010) Phosphorylation of
AATYK1 by Cdk5 suppresses its tyrosine phosphorylation. PLoS One 5, e10260 [PubMed]
10-10) Harada, K., Matsuoka, H., Nakamura,
J., Fukuda, M. and Inoue, M. (2010) Storage of GABA in chromaffin granules and
not in synaptic-like microvesicles in rat adrenal medullary cells. J. Neurochem. 114, 617-626 [PubMed]
10-11) Takano, T., Tsutsumi, K., Saito, T., Asada, A., Tomomura, M.,
Fukuda, M. and Hisanaga, S. (2010) AATYK1A phosphorylation by Cdk5 regulates
the recycling endosome pathway. Genes Cells
15, 783-797 [PubMed]
i2009”Nj
09-1) Ishibashi,
K., Kanno, E., Itoh, T. and Fukuda, M. (2009) Identification and characterization of a novel
Tre-2/Bub2/Cdc16 (TBC) protein that possesses Rab3A-GAP activity. Genes
Cells 14, 41-52 [PubMed]iTBCƒhƒƒCƒ“‚ÍRab-GAPƒhƒƒCƒ“‚Æl‚¦‚ç‚ê‚Ä‚¨‚èAƒqƒg‚̃Qƒmƒ€ã‚É‚Í40Ží—ÞˆÈã‚ÌTBC’`”’Ž¿‚ª‘¶Ý‚µ‚Ü‚·‚ªAŽÀÛ‚ÉRab-GAP‚Æ‚µ‚Ä“¯’肳‚ê‚Ä‚¢‚é‚à‚̂͋͂©‚Å‚·B–{˜_•¶‚Å‚ÍAƒzƒ‹ƒ‚ƒ“è÷—±‚©‚ç‚ÌRab3A‚Ì—V—£‚ðŽw•W‚É‚µ‚ÄARab3A-GAPŠˆ«‚ð—L‚·‚éTBC’`”’Ž¿‚Ìin vivo‚ł̃XƒNƒŠ[ƒjƒ“ƒO–@‚ðŠm—§‚µ‚Ü‚µ‚½Bj
09-2) Imai, A., Fukuda, M., Yoshie, S., Nashida,
T. and Shimomura, H. (2009) Redistribution of Rab27-specific effector Slac2-c,
but not Slp4-a, after isoproterenol-stimulation in rat parotid acinar cells. Arch. Oral Biol.
54, 361-368 [PubMed]
09-3) Imai, A., Yoshie, S., Nashida, T., Fukuda, M.
and Shimomura, H. (2009) Redistribution of small
GTP-binding protein, Rab27B, in rat parotid acinar cells after stimulation with
isoproterenol. Eur.
J. Oral Sci. 117, 224-230
[PubMed]
09-4) Tambe, Y., Yamamoto, A., Isono, T., Chano,
T., Fukuda, M. and Inoue, H. (2009) The drs tumor suppressor is involved in the
maturation process of autophagy induced by low serum. Cancer
Lett. 283, 74-83 [PubMed]
09-5) Tamura, K., Ohbayashi, N., Maruta, Y.,
Kanno, E., Itoh, T. and Fukuda, M. (2009) Varp is a novel Rab32/38-binding
protein that regulates Tyrp1 trafficking in melanocytes. Mol. Biol. Cell 20, 2900-2908 [PubMed]iƒƒ‰ƒjƒ“‡¬y‘fƒ`ƒƒVƒi[ƒ[ŠÖ˜A’`”’Ž¿1(Tyrp1)‚Ì—A‘—‚ÉŠÖ—^‚·‚éV‹K’`”’Ž¿‚Æ‚µ‚ÄRab32/38ƒGƒtƒFƒNƒ^[Varp‚𓯒肵‚Ü‚µ‚½IVarp‚ðŒ‡‘¹‚·‚郃‰ƒmƒTƒCƒg‚ł̓ƒ‰ƒmƒ\[ƒ€‚ÉTyrp1‚ª³‚µ‚—A‘—‚³‚ꂸA×–E“à‚̃ƒ‰ƒjƒ“F‘f—Ê‚ªŒ¸‚·‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½jmƒŠƒ“ƒNn
09-6) Arimura, N., Kimura, T., Nakamuta, S., Taya,
S., Funahashi, Y., Hattori, A., Shimada, A., Ménager, C.,
Kawabata, S., Fujii, K., Iwamatsu, A., Segal, R. A., Fukuda, M. and Kaibuchi,
K. (2009) Anterograde transport of TrkB in axons is
mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16, 675-686 [PubMed]
09-7) Maekawa, F., Tsuboi, T., Fukuda, M. and
Pellerin, L. (2009) Regulation of the intracellular distribution, cell surface
expression, and protein levels of AMPA receptor GluR2 subunits by the
monocarboxylate transporter MCT2 in neuronal cells. J. Neurochem. 109, 1767-1778 [PubMed]
09-8) Terabayashi, T., Funato, Y., Fukuda, M. and
Miki, H. (2009) A coated vesicle-associated kinase of 104 kDa (CVAK104) induces
lysosomal degradation of frizzled 5 (Fzd5). J. Biol. Chem. 284, 26716-26724 [PubMed] iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
09-9) Vinet, A.
F., Fukuda, M., Turco, S. J. and Descoteaux, A. (2009) The Leishmania donovani lipophosphoglycan excludes the vesicular
proton-ATPase from phagosomes by impairing the recruitment of Synaptotagmin V. PLoS Pathog.
5, e1000628 [PubMed]
09-10) Miyakawa, K., Ryo, A., Murakami, T., Ohba, K.,
Yamaoka, S., Fukuda, M., Guatelli, J. and Yamamoto, N. (2009) BCA2/Rabring7
promotes tetherin-dependent HIV-1 restriction. PLoS Pathog. 5, e1000700 [PubMed]
i2008”Nj
08-1) Gauthier, B. R., Duhamel, D. L., Iezzi, M.,
Theander, S., Saltel, F., Fukuda, M., Wehrle-Haller, B. and Wollheim, C. B. (2008)
Synaptotagmin VII splice variants ƒ¿, ƒÀ, and
ƒÂ are expressed in pancreatic ƒÀ-cells
and regulate insulin exocytosis. FASEB J. 22,
194-206 [PubMed]
08-2) Mori, Y., Higuchi, M., Hirabayashi, Y., Fukuda, M. and Gotoh, Y. (2008) JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J.
27, 76-87 [PubMed]
08-3) Kanno, E. and Fukuda, M. (2008) Increased plasma membrane
localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12
cells. J. Neurosci. Res. 86, 1036-1043 [PubMed]iJNRŽ‚Ì•\ކ‚ÉÌ—p‚³‚ê‚Ü‚µ‚½IƒVƒiƒvƒgƒ^ƒOƒ~ƒ“I•ªŽq‚Ì—A‘—‚É‚¨‚¯‚éO“œ½Cü‚̈Ӌ`‚ð‰ðÍ‚µ‚Ü‚µ‚½Bj
08-4) Sano, H.,
Roach, W. G., Peck, G. R., Fukuda, M. and Lienhard, G. E. (2008) Rab10 in
insulin-stimulated GLUT4 translocation. Biochem. J. 411, 89-95 [PubMed]
08-5) Holt, O.,
Kanno, E., Bossi, G., Booth, S., Daniele, T., Santoro, A., Arico, M., Saegusa,
C., Fukuda, M. and Griffiths, G. M. (2008) Slp1 and Slp2-a localize to the
plasma membrane of CTL and contribute to secretion from the immunological
synapse. Traffic
9, 446-457 [PubMed]i×–EŠQ«T×–E‚É”Œ»‚·‚éRab27AƒGƒtƒFƒNƒ^[‚Æ‚µ‚ÄSlp2-a‚𓯒肵ASlp2-a‚ª–ƉuƒVƒiƒvƒX‚ÉWÏ‚·‚邱‚Æ‚ð“Ë‚«Ž~‚߂܂µ‚½Bj
08-6) Frittoli, E., Palamidessi, A.,
Pizzigoni, A., Lanzetti, L., Garrè, M.,
Troglio, F., Troilo, A., Fukuda, M., Di Fiore, P. P., Scita, G. and Confalonieri, S. (2008) The
primate-specific protein TBC1D3 is required for optimal macropinocytosis in a
novel ARF6 dependent pathway. Mol. Biol. Cell 19,
1304-1316 [PubMed]
08-7) Fujibayashi,
A., Taguchi, T., Misaki, R., Ohtani, M., Dohmae, N., Takio, K., Yamada, M., Gu,
J., Yamakami, M., Fukuda, M., Waguri, S., Uchiyama, Y., Yoshimori, T. and
Sekiguchi, K. (2008) Human RME-8 is involved in
membrane trafficking through early endosomes. Cell Struct. Funct. 33, 35-50 [PubMed]
08-8) Fukuda, M., Kanno, E., Ishibashi, K. and Itoh, T. (2008) Large scale screening for novel Rab
effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7,
1031-1042 [PubMed]iRab1`Rab30‚̃GƒtƒFƒNƒ^[•ªŽq‚ðRab
two-hybrid panel‚ð—p‚¢‚Ä–Ô—…“I‚ɃXƒNƒŠ[ƒjƒ“ƒO‚µ‚Ü‚µ‚½B‚»‚ÌŒ‹‰ÊARab‚ƃGƒtƒFƒNƒ^[•ªŽq‚̑ΉžŠÖŒW‚͈ȑOl‚¦‚ç‚ê‚Ä‚¢‚½ˆÈã‚É•¡ŽG‚Å‚ ‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½BƒGƒtƒFƒNƒ^[•ªŽq‚ÌRabŒ‹‡“ÁˆÙ«‚ðÚׂɒ²‚ׂ½‰‚߂Ă̘_•¶‚Å‚·Ij
08-9) Martin, D.,
Allagnat, F., Chaffard, G., Caille, D., Fukuda, M., Regazzi, R., Abderrahmani, A.,
Waeber, G., Meda, P., Maechler, P. and Haefliger, J.-A. (2008) Functional
significance of repressor element 1 silencing transcription factor (REST)
target genes in pancreatic beta cells. Diabetologia 51, 1429-1439 [PubMed]
08-10) Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda,
T. and Yoshimori, T. (2008) The Atg16L complex specifies the site of LC3 lipidation
for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092-2100 [PubMed]iFaculty of 1000‚ÌMust read paper‚Æ‚µ‚Ä‘I’èj
08-11) Itoh, T., Fujita, N., Kanno, E., Yamamoto, A.,
Yoshimori, T. and Fukuda, M. (2008) Golgi-resident small GTPase Rab33B
interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell
19, 2916-2925 [PubMed]iRab‚Ì–Ô—…“I‰ð̓c[ƒ‹‚ð—p‚¢‚ÄAƒI[ƒgƒtƒ@ƒW[i“Á‚ÉŠu—£–ŒL’·j‚É•K{‚̈öŽqAtg16L‚ªRab33B‚̃GƒtƒFƒNƒ^[•ªŽq‚Æ‚µ‚Ä‹@”\‚·‚é‰Â”\«‚ð‰‚߂˾‚ç‚©‚É‚µ‚Ü‚µ‚½Bƒ_ƒCƒiƒ~ƒbƒN‚È–Œ—A‘—‚𔺂¤ƒI[ƒgƒtƒ@ƒW[‚Æ–Œ—A‘—‚̧ŒäˆöŽq‚Å‚ ‚éRab‚Æ‚ª’¼ÚŒ‹‚т‚¢‚½‰‚߂Ă̘_•¶‚Å‚·IjiFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
08-12) Saegusa,
C., Kanno, E., Itohara, S. and Fukuda, M. (2008) Expression of Rab27B-binding protein
Slp1 in pancreatic acinar cells and its involvement in amylase secretion. Arch.
Biochem. Biophys. 475, 87-92 [PubMed]iRab27ƒGƒtƒFƒNƒ^[Slp1‚ÍAäX‘Ÿ‚ÌŠO•ª”åiacinarj×–E‚ÉÅ‚à–L•x‚É”Œ»‚µ‚Ä‚¨‚èASlp1ƒmƒbƒNƒAƒEƒgƒ}ƒEƒX‚Å‚ÍâHŽž‚ÉŒ©‚ç‚ê‚éƒAƒ~ƒ‰[ƒ[‚Ì•ª”傪’ቺ‚µ‚Ä‚¢‚邱‚Æ‚ª–¾‚ç‚©‚ɂȂè‚Ü‚µ‚½Bj
08-13) Patino-Lopez,
G., Dong, X., Ben-Aissa, K., Bernot, K. M., Itoh, T., Fukuda, M., Kruhlak, M.
J., Samelson, L. E. and Shaw, S. (2008) Rab35 and its GAP EPI64C in T cells
regulate receptor recycling and immunological synapse formation. J. Biol. Chem.
283, 18323-18330 [PubMed]
08-14) Kukimoto-Niino, M., Sakamoto, A., Kanno, E.,
Hanawa-Suetsugu, K., Terada, T., Shirouzu, M., Fukuda, M. and Yokoyama, S.
(2008) Structural basis for the exclusive specificity of Slac2-a/melanophilin
for the Rab27 GTPases. Structure 16,
1478-1490 [PubMed]i—Œ¤E‰¡ŽR–ΔV涂̃Oƒ‹[ƒv‚Ƃ̋¤“¯Œ¤‹†‚ÅARab27B-Slac2-a-SHD‚ÌXüŒ‹»\‘¢‚ðŒˆ’è‚µ‚Ü‚µ‚½BSlac2-a‚ÌSHD‚ªRab27‚݂̂ð“ÁˆÙ“I‚É”Fޝ‚·‚é‹@\‚ª‰ð–¾‚³‚ꂽ‚¾‚¯‚łȂAGriscelliÇŒóŒQгŽÒ‚ÉŒ©‚ç‚ê‚é•ψقłÍRab27-Slac2-a‚ÌŒ‹‡‚ª‘¹‚È‚í‚ê‚邱‚Æ‚ª\‘¢Šw“I‚É‚à— •t‚¯‚ç‚ê‚Ü‚µ‚½BjmƒŠƒ“ƒNniFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
08-15) Herrero-Turrión, M. J.,
Calafat, J., Janssen, H., Fukuda, M. and Mollinedo, F. (2008) Rab27a regulates
exocytosis of tertiary and specific granules in human neutrophils. J. Immunol.
181, 3793-3803 [PubMed]
08-16) Kesari, A., Fukuda, M., Knoblach, S., Bashir,
R., Nader, G. A., Rao, D., Nagaraju, K. and Hoffman, E. P. (2008)
Dysferlin-deficiency shows compensatory induction of Rab27A/Slp2a that may
contribute to inflammatory onset. Am. J. Pathol. 173,
1476-1487 [PubMed]
08-17) Vinet, A. F., Fukuda, M. and Descoteaux, A. (2008)
The exocytosis regulator
synaptotagmin V controls phagocytosis in macrophages. J. Immunol. 181, 5289-5295 [PubMed]
08-18) Yu, E.,
Kanno, E., Choi, S., Sugimori, M., Moreira, J. E., Llinás, R. R. and Fukuda, M. (2008) Role of Rab27 in synaptic transmission at
the squid giant synapse. Proc. Natl. Acad. Sci. USA 105, 16003-16008 [PubMed]iRab27‚Í“à•ª”å×–EAŠO•ª”å×–EA–Ɖu×–E‚Ȃǂ̗lX‚È•ª”医ۂɊ֗^‚·‚邱‚Æ‚ª’m‚ç‚ê‚Ä‚¢‚Ü‚·‚ªA_Œo×–E‚̃VƒiƒvƒX¬–E—A‘—‚É‚¨‚¯‚é–ðŠ„‚Í‚±‚ê‚܂Ŗ¾‚ç‚©‚ł͂ ‚è‚Ü‚¹‚ñ‚Å‚µ‚½B–{˜_•¶‚Å‚ÍARab27‚ªü’Ž‚©‚çƒqƒg‚Ü‚Åi‰»“I‚ɕۑ¶‚³‚ê‚Ä‚¢‚邱‚Ƃɒ…–Ú‚µAƒ„ƒŠƒCƒJ‚Ì‹‘厲õ‚ð—p‚¢‚ÄƒŠƒTƒCƒNƒŠƒ“ƒO¬–E‚Ìactive zone‚Ö‚Ì—A‘—‹y‚уhƒbƒLƒ“ƒO‰ß’ö‚ÉŠÖ—^‚·‚邱‚Æ‚ð‰‚߂˾‚ç‚©‚É‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn
i2007”Nj
07-1) Tsuboi, T.,
Kanno, E. and Fukuda, M. (2007) The
polybasic sequence in the C2B domain of rabphilin is required for the vesicle
docking step in PC12 cells. J. Neurochem. 100, 770-779 [PubMed]
07-2) Kishida, S.,
Hamao, K., Inoue, M., Hasegawa, M., Matsuura, Y., Mikoshiba, K., Fukuda, M. and
Kikuchi, A. (2007) Dvl regulates endo- and exocytotic processes through binding
to synaptotagmin. Genes Cells 12,
49-61 [PubMed]
07-3) Iwashita, S., Kobayashi, K., Kubo, Y., Hinohara,
Y., Sezaki, M., Nakamura, K., Suzuki-Migishima, R., Yokoyama, M., Satoh, S.,
Fukuda, M., Ohba, M., Kato, C., Adachi, E. and Song, S.-Y. (2007) Versatile
roles of R-Ras GAP in neurite formation of PC12 cells and embryonic vascular
development. J.
Biol. Chem. 282, 3413-3417 [PubMed]
07-4) Tsuboi, T.
and Fukuda, M. (2007) Synaptotagmin
VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells. Genes Cells 12,
511-519 [PubMed]
07-5) Hashii, M., Fukuda M., Nomura, H., Ito, N., Takahashi, H., Hattori, S., Mikoshiba,
K., Noda, M. and Higuchi, Y. (2007) Up-regulation
of ras-GAP genes is reversed by a MEK
inhibitor and doxorubicin in v-Ki-ras transformed NIH/3T3 fibroblasts. Biochem.
Biophys. Res. Commun. 356, 374-380 [PubMed]
07-6) Sano, H., Eguez, L., Teruel, M.
N., Fukuda, M., Chuang, T. D., Chavez, J. A., Lienhard, G. E. and McGraw, T. E.
(2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated
translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 5, 293-303 [PubMed]
07-7) Haberman, Y., Ziv, I., Gorzalczany, Y.,
Hirschberg, K., Mittleman, L., Fukuda, M. and Sagi-Eisenberg, R. (2007)
Synaptotagmin (Syt) IX is an essential determinant for protein sorting to
secretory granules in mast cells. Blood 109, 3385-3392 [PubMed]
07-8) Musch, M. W., Arvans, D. L., Walsh-Reitz, M. M., Uchiyama, K.,
Fukuda, M. and Chang, E. B. (2007) Synaptotagmin I binds intestinal epithelial
NHE3 and mediates cyclic AMP- and Ca2+-induced endocytosis by
recruitment of AP2 and clathrin. Am.
J. Physiol. Gastrointest. Liver Physiol. 292, G1549-1558 [PubMed]
07-9) Brunner, Y., Couté, Y., Iezzi, M.,
Foti, M., Fukuda, M., Hochstrasser, D., Wollheim, C. B. and Sanchez, J.-C.
(2007) Proteomic analysis of insulin secretory granules. Mol. Cell. Proteomics 6, 1007-1017 [PubMed]
07-10) Takahashi, M., Murate, M., Fukuda, M., Sato,
S. B., Ohta, A. and Kobayashi, T. (2007) Cholesterol controls lipid endocytosis
through rab11. Mol.
Biol. Cell 18, 2667-2677 [PubMed]iFaculty of 1000‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj
07-11) Misaki, R., Nakagawa, T., Fukuda, M., Taniguchi, N. and Taguchi, T.
(2007) Spatial segregation of degradation- and recycling-trafficking pathways
in COS-1 cells. Biochem. Biophys. Res. Commun. 360, 580-585 [PubMed]
07-12) Swiatecka-Urban, A., Talebian, L., Kanno, E.,
Moreau-Marquis, S., Coutermarsh, B., Hansen, K., Karlson, K. H., Barnaby, R.,
Cheney, R. E., Langford, G. M., Fukuda, M. and Stanton, B. A. (2007) Myosin Vb
is required for trafficking of cystic fibrosis transmembrane conductance
regulator in Rab11a-specific apical recycling endosomes in polarized human
airway epithelial cells. J. Biol. Chem. 282, 23725-23736 [PubMed]
i2006”Nj
06-1) Herrero-Turrión, M. J.,
Fukuda, M. and Mollinedo, F. (2006) Cloning and genomic characterization of
sytdep, a new synaptotagmin XIV-related gene. Biochem. Biophys. Res. Commun. 340, 386-394 [PubMed]
06-2) Fukuda, M. (2006)
Distinct developmental expression of synaptotagmin I and IX in the mouse brain.
NeuroReport 17,
179-182 [PubMed]
06-3) Fukuda, M. (2006)
Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin:
Hierarchy of Rab27A effectors. Biochem. Biophys. Res. Commun. 343, 666-674 [PubMed]
06-4) Saxena, S. K.,
Horiuchi, H. and Fukuda, M. (2006) Rab27a regulates epithelial sodium channel
(ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4
effector mechanism. Biochem. Biophys. Res. Commun. 344, 651-657 [PubMed]
06-5) Tsuboi, T. and
Fukuda, M. (2006) The Slp4-a linker domain controls exocytosis through
interaction with Munc18-1·syntaxin-1a complex. Mol. Biol. Cell
17, 2101-2112 [PubMed]
06-6) Tsuboi, T. and
Fukuda, M. (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core
vesicle exocytosis in PC12 cells. J. Cell Sci. 119, 2196-2203 [PubMed]
06-7) Saegusa, C.,
Tanaka, T., Tani, S., Itohara, S., Mikoshiba, K. and
Fukuda, M. (2006) Decreased basal mucus secretion by Slp2-a-deficient gastric
surface mucous cells. Genes Cells 11,
623-631 [PubMed]
06-8) Mahoney, T. R.,
Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z.-W., Fukuda, M.
and Nonet, M. L. (2006) Regulation of synaptic transmission by RAB-3 and RAB-27
in Caenorhabditis elegans. Mol. Biol. Cell
17, 2617-2625 [PubMed]
06-9) Fatemi, S. H.,
Reutiman, T. J., Folsom, T. D., Bell, C., Nos, L., Fried, P., Pearce, D. A.,
Singh, S., Siderovski, D. P., Willard, F. S. and Fukuda, M. (2006) Chronic olanzapine
treatment causes differential expression of genes in frontal cortex of rats as revealed
by DNA microarray technique. Neuropsychopharmacol. 31, 1888-1899 [PubMed]
06-10) Itoh, T.,
Satoh, M., Kanno, E. and Fukuda, M. (2006) Screening for target Rabs of TBC
(Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding
activity. Genes
Cells 11, 1023-1037 [PubMed]iRab60Ží—Þ‚ÆTBC’`”’Ž¿40Ží—Þ‚ÌŒ‹‡‚ð–Ô—…“I‚ɉðÍ‚·‚邱‚Ƃɂæ‚èRab-GAP‚Ì“¯’è‚ðŽŽ‚Ý‚Ü‚µ‚½Bj
06-11) Kapp-Barnea,
Y., Ninio-Many, L., Hirschberg, K., Fukuda, M., Jeromin, A. and Sagi-Eisenberg,
R. (2006) Neuronal calcium sensor-1 (NCS-1) and PI4KƒÀ
stimulate ERK1/2 signaling by accelerating recycling through endocytic
recycling compartment (ERC). Mol. Biol. Cell 17, 4130-4141 [PubMed]
06-12) Kondo, H., Shirakawa,
R., Higashi, T., Kawato, M., Fukuda, M., Kita, T. and Horiuchi, H. (2006)
Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity
for Rab27 in platelets. J. Biol. Chem. 281, 28657-28665 [PubMed]
06-13) Itoh, T. and
Fukuda, M. (2006) Identification of
EPI64 as a GTPase-activating protein specific for Rab27A. J. Biol. Chem. 281, 31823-31831 [PubMed] iRab27A•sŠˆ«‰»y‘fRab27A-GAP‚𓯒èIjmƒŠƒ“ƒNn
06-14) Imai, A., Yoshie, S., Nashida, T., Shimomura, H.
and Fukuda, M. (2006) Functional involvement of Noc2, a Rab27 effector, in rat
parotid acinar cells. Arch. Biochem. Biophys. 455,
127-135 [PubMed]
i2005”Nj
05-1) Atiya-Nasagi,
Y., Cohen, H., Medalia, O., Fukuda, M. and Sagi-Eisenberg, R. (2005) O-glycosylation is essential for
intracellular targeting of synaptotagmins I and II in non-neuronal specialized
secretory cells. J.
Cell Sci. 118, 1363-1372 [PubMed]
05-2) Haberman, Y.,
Ziv, I., Gorzalczany, Y., Fukuda, M. and Sagi-Eisenberg, R. (2005) Classical
protein kinase C(s) regulates targeting of synaptotagmin IX to the endocytic
recycling compartment. J. Cell Sci. 118, 1641-1649 [PubMed]
05-3) Kuroda, T. S.
and Fukuda, M. (2005) Functional analysis of Slac2-c/MyRIP as a linker protein
between melanosomes and myosin VIIa. J. Biol. Chem. 280, 28015-28022 [PubMed]
05-4) Mîinea, C.
P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen, J.,
Lane, W. S. and Lienhard, G. E. (2005) AS160, the Akt substrate regulating
GLUT4 translocation, has a functional Rab GTPase activating protein domain. Biochem. J.
391, 87-93 [PubMed]
05-5) Roggero, C. M.,
Tomes, C. N., De Blas, G. A., Castillo, J., Michaut, M. A., Fukuda, M. and
Mayorga, L. S. (2005) Protein Kinase C-mediated phosphorylation of the two
polybasic regions of synaptotagmin VI regulates their function in acrosomal
exocytosis. Dev.
Biol. 285, 422-435 [PubMed]
05-6) Iezzi, M.,
Eliasson, L., Fukuda, M. and Wollheim, C. B. (2005) Adenovirus-mediated
silencing of Synaptotagmin 9 inhibits Ca2+-dependent insulin
secretion in islets. FEBS Lett. 579,
5241-5246 [PubMed]
05-7) Saxena, S.,
Singh, M., Engisch, K., Fukuda, M. and Kaur, S. (2005) Rab proteins regulate
epithelial sodium channel activity in colonic epithelial HT-29 cells. Biochem. Biophys.
Res. Commun. 337, 1219-1223
[PubMed]
05-8)
Swiatecka-Urban, A., Brown, A., Moreau-Marquis, S., Renuka, J., Coutermarsh,
B., Barnaby, R., Karlson, K. H., Flotte, T. R., Fukuda, M., Langford, G. M. and
Stanton, B. A. (2005) The short apical membrane half-life of rescued ĢF508-cystic
fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis
of ĢF508-CFTR in polarized human airway epithelial
cells. J. Biol.
Chem. 280, 36762-36772 [PubMed]
05-9) Fukuda, M.,
Imai, A., Nashida, T. and Shimomura, H. (2005) Slp4-a/granuphilin-a interacts
with syntaxin-2/3 in a Munc18-2-dependent manner. J. Biol. Chem. 280, 39175-39184 [PubMed]
05-10) Tsuboi, T. and
Fukuda, M. (2005) The C2B domain of rabphilin directly interacts with SNAP-25
and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J. Biol. Chem.
280, 39253-39259 [PubMed] i“à•ª”å×–E‚É‚¨‚¯‚éƒzƒ‹ƒ‚ƒ“è÷—±‚Ì×–E–Œ‚ւ̂‚Ȃ¬Ž~‚ß‚ÌV•ªŽq‹@\‚ð‰ð–¾IjmƒŠƒ“ƒNn
i2004”Nj
04-1) Sadakata, T.,
Mizoguchi, A., Sato, Y., Katoh-Semba, R., Fukuda, M., Mikoshiba, K. and
Furuichi, T. (2004) The secretory granule-associated protein CAPS2 regulates
neurotrophin release and cell survival. J. Neurosci. 24, 43-52 [PubMed]
04-2) Fukuda, M. and
Kuroda, T. S. (2004) Missense mutations in the globular tail of myosin-Va in dilute mice partially impair binding of
Slac2-a/melanophilin. J. Cell Sci. 117, 583-591 [PubMed]
04-3) Shirakawa, R.,
Higashi, T., Tabuchi, A., Yoshioka, A., Nishioka, H., Fukuda, M., Kita, T. and
Horiuchi, H. (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense
core granule secretion in platelets. J. Biol. Chem. 279, 10730-10737 [PubMed]
04-4) Rickman, C., Archer,
D. A., Meunier, F. A., Craxton, M., Fukuda, M., Burgoyne, R. D. and Davletov,
B. (2004) Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated
by an evolutionarily conserved motif and is sensitive to inositol
hexakisphosphate. J. Biol. Chem. 279,
12574-12579 [PubMed]
04-5) Fukuda, M.,
Kanno, E. and Yamamoto, A. (2004) Rabphilin and Noc2 are recruited to
dense-core vesicles through specific interaction with Rab27A in PC12 cells. J. Biol. Chem.
279, 13065-13075 [PubMed]
04-6) Imai, A.,
Yoshie, S., Nashida, T., Shimomura, H. and Fukuda, M. (2004) The small GTPase
Rab27B regulates amylase release from rat parotid acinar cells. J. Cell Sci.
117, 1945-1953 [PubMed]
04-7) Fukuda, M. and
Itoh, T. (2004) Slac2-a/melanophilin contains multiple PEST-like sequences that
are highly sensitive to proteolysis. J. Biol. Chem. 279, 22314-22321 [PubMed]
04-8) Fukuda, M.
(2004) RNA interference-mediated silencing of synaptotagmin IX, but not
synaptotagmin I, inhibits dense-core vesicle exocytosis in PC12 cells. Biochem. J.
380, 875-879 [PubMed]
04-9) Iezzi, M.,
Kouri, G., Fukuda, M. and Wollheim, C. B. (2004) Synaptotagmin V and IX
isoforms control Ca2+-dependent insulin exocytosis. J. Cell Sci.
117, 3119-3127 [PubMed]
04-10) Zhang, Q., Fukuda,
M., Van Bockstaele, E., Pascual, O. and Haydon, P. G. (2004) Synaptotagmin IV
regulates glial glutamate release. Proc. Natl. Acad. Sci. USA 101, 9441-9446 [PubMed]
04-11) Fukuda, M.
(2004) Alternative splicing in the first ƒ¿-helical region of the
Rab-binding domain of Rim regulates Rab3A binding activity: Is Rim a Rab3
effector protein during evolution? Genes Cells 9, 831-842 [PubMed]
04-12) Fukuda, M. and
Yamamoto, A. (2004) Effect of forskolin on synaptotagmin IV protein trafficking
in PC12 cells. J.
Biochem. 136, 245-253 [PubMed]
04-13) Kuroda, T. S.
and Fukuda, M. (2004) Rab27A-binding protein Slp2-a is required for peripheral
melanosome distribution and elongated cell shape in melanocytes. Nature Cell Biol. 6, 1195-1203 [PubMed] iRab27A, Slac2-a, Slp2-a‚ð‰î‚·‚郃‰ƒjƒ“F‘f—A‘—‚Ì•ªŽqƒƒJƒjƒYƒ€‚ð‰ð–¾‚µ‚Ü‚µ‚½BjmƒŠƒ“ƒNn
04-14) Fukuda, M., Kanno,
E., Satoh, M., Saegusa, C. and Yamamoto, A. (2004) Synaptotagmin VII is
targeted to dense-core vesicles and regulates their Ca2+-dependent
exocytosis in PC12 cells. J. Biol. Chem. 279, 52677-52684 [PubMed]
04-15) Llinás, R. R.,
Sugimori, M., Moran, K. A., Moreira, J. E. and Fukuda, M. (2004) Vesicular
reuptake inhibition by a synaptotagmin I C2B domain antibody at the squid giant
synapse. Proc.
Natl. Acad. Sci. USA 101,
17855-17860 [PubMed]
i2003”Nj
03-1) Fukuda, M.,
Kanno, E., Ogata, Y., Saegusa, C., Kim, T., Peng Loh, Y. and Yamamoto, A. (2003)
Nerve growth factor-dependent sorting of synaptotagmin IV protein to mature
dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem.
278, 3220-3226 [PubMed]
03-2) Bahadoran, P., Busca,
R., Chiaverini, C., Westbroek, W., Lambert, J., Bille, K., Valony, G., Fukuda, M.,
Naeyaert, J.-M., Ortonne, J.-P. and Ballotti, R. (2003) Characterization of the
molecular defects in Rab27a, caused by RAB27A
missense mutations found in patients with Griscelli syndrome. J. Biol. Chem.
278, 11386-11392 [PubMed]
03-3) Fukuda, M.
(2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2:
Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J. Biol. Chem.
278, 15373-15380 [PubMed] iRabŒ‹‡“ÁˆÙ«‚ð–Ô—…“I‚ɉðÍ‚·‚éƒVƒXƒeƒ€‚ð\’zIj
03-4) Fukuda, M.
(2003) Slp4-a/granuphilin-a inhibits dense-core vesicle exocytosis through
interaction with the GDP-bound form of Rab27A in PC12 cells. J. Biol. Chem.
278, 15390-15396 [PubMed]
03-5) Fukuda, M.
(2003) Molecular cloning, expression, and characterization of a novel class of
synaptotagmin (Syt XIV) conserved from Drosophila
to humans. J.
Biochem. 133, 641-649 [PubMed]
03-6) Fukuda, M.
(2003) Molecular cloning and characterization of human, rat, and mouse
synaptotagmin XV. Biochem. Biophys. Res. Commun. 306, 64-71 [PubMed]
03-7)
Kuroda, T. S., Ariga, H. and Fukuda,
M. (2003) The actin-binding domain of Slac2-a/melanophilin is required for
melanosome distribution in melanocytes. Mol. Cell. Biol. 23, 5245-5255 [PubMed]
03-8) Sato, M., Moroi,
K., Nishiyama, M., Zhou, J., Usui, H., Kasuya, Y., Fukuda, M., Kohara, Y.,
Komuro, I. and Kimura, S. (2003) Characterization of a novel C. elegans RGS protein with a C2 domain:
Evidence for direct association between C2 domain and Gaq subunit. Life Sci.
73, 917-932 [PubMed]
03-9) Haberman, Y.,
Grimberg, E., Fukuda, M. and Sagi-Eisenberg, R. (2003) Synaptotagmin IX, a
possible linker between the perinuclear endocytic recycling compartment and the
microtubules. J.
Cell Sci. 116, 4307-4318 [PubMed]
03-10) Waselle, L.,
Coppola, T., Fukuda, M., Iezzi, M., El-Amraoui, A., Petit, C. and Regazzi, R.
(2003) Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin
exocytosis. Mol.
Biol. Cell 14, 4103-4113 [PubMed]
03-11) Yoo, S.,
Nguyen, M. P., Fukuda, M., Bittner, G. D. and Fishman, H. M. (2003)
Plasmalemmal sealing of transected mammalian neurites is a gradual process
mediated by Ca2+-regulated proteins. J. Neurosci. Res. 74, 541-551 [PubMed]
i2002”Nj
02-1) Fukuda, M.,
Kowalchyk, J. A., Zhang, X., Martin, T. F. J. and Mikoshiba, K. (2002)
Synaptotagmin IX regulates Ca2+-dependent secretion in PC12 cells. J. Biol. Chem.
277, 4601-4604 [PubMed] iPC12×–E‚©‚ç‚̃zƒ‹ƒ‚ƒ“•ª”å‚ÉŠÖ—^‚·‚éV‚µ‚¢ƒVƒiƒvƒgƒ^ƒOƒ~ƒ“‚𓯒èIj
02-2) Kuroda, T. S.,
Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) The Slp homology domain of synaptotagmin-like
proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J. Biol. Chem.
277, 9212-9218 [PubMed] iSHD—̈悪’ᕪŽq—ÊG’`”’Ž¿Rab27AŒ‹‡ƒhƒƒCƒ“‚Å‚ ‚邱‚Ƃ𔌩Ij
02-3) Fukuda, M.,
Kuroda, T. S. and Mikoshiba, K. (2002) Slac2-a/melanophilin, the missing link
between Rab27 and myosin Va: Implications of a tripartite protein complex for
melanosome transport. J. Biol. Chem. 277, 12432-12436 [PubMed] iRab27A·Slac2-a·myosin Va‚Ì•¡‡‘̂ɂæ‚胃‰ƒmƒ\[ƒ€—A‘—‚ðs‚¤‚±‚Æ‚ðŒ©‚¢‚¾‚·BJBCŽ‚Ì•\ކ‚É‚à‚È‚è‚Ü‚µ‚½B“–ŠYŒ¤‹†•ª–ì‚É‚¨‚¢‚Ä”íˆø—p—¦‚ÅãˆÊ1%‚É‚àƒ‰ƒ“ƒN‚³‚ê‚Ü‚µ‚½mƒŠƒ“ƒNnBjiFaculty of 1000‚ÌRecommended
paper‚Æ‚µ‚Ä‘I’èj
02-4) Zhang, X.,
Kim-Miller, M. J., Fukuda, M., Kowalchyk, J. A. and Martin, T. F. J. (2002) Ca2+-dependent
synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered
exocytosis. Neuron
34, 599-611 [PubMed]
02-5) Kuroda, T. S.,
Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) Synaptotagmin-like protein 5: A
novel Rab27A effector with C-terminal tandem C2 domains. Biochem. Biophys. Res. Commun. 293, 899-906 [PubMed]
02-6) Fukuda, M.,
Ogata, Y., Saegusa, C., Kanno, E. and Mikoshiba, K. (2002) Alternative splicing
isoforms of synaptotagmin VII in the mouse, rat and human. Biochem. J. 365, 173-180 [PubMed]
02-7) Saegusa, C.,
Fukuda, M. and Mikoshiba, K. (2002) Synaptotagmin V is targeted to dense-core
vesicles that undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem.
277, 24499-24505 [PubMed]
02-8) Ibata, K.,
Hashikawa, T., Tsuboi, T., Terakawa, S., Liang, F., Mizutani, A., Fukuda, M.
and Mikoshiba, K. (2002) Non-polarized distribution of synaptotagmin IV in
neurons: Evidence that synaptotagmin IV is not a synaptic vesicle protein. Neurosci. Res.
43, 401-406 [PubMed]
02-9) Fukuda, M.,
Katayama, E. and Mikoshiba, K. (2002) The calcium-binding loops of the tandem
C2 domains of synaptotagmin VII cooperatively mediate calcium-dependent
oligomerization. J.
Biol. Chem. 277,
29315-29320 [PubMed]
02-10) Fukuda, M.
(2002) Vesicle-associated membrane protein-2/synaptobrevin binding to
synaptotagmin I promotes O-glycosylation
of synaptotagmin I. J. Biol. Chem. 277, 30351-30358 [PubMed]
02-11) Fukuda, M.
(2002) The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical
calcium-dependent phospholipid-binding machine: Comparison with the C2A domain
of synaptotagmin I. Biochem. J. 366, 681-687 [PubMed]
02-12) Fukuda, M., Kanno,
E., Saegusa, C., Ogata, Y. and Kuroda, T. S. (2002) Slp4-a/granuphilin-a
regulates dense-core vesicle exocytosis in PC12 cells. J. Biol. Chem. 277, 39673-39678 [PubMed]
02-13) Fukuda, M. (2002)
Synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin is a
critical determinant of GTP-dependent specific binding to Rab27A. J. Biol. Chem.
277, 40118-40124 [PubMed]
02-14) Fukuda, M. and
Kuroda, T. S. (2002) Slac2-c (synaptotagmin-like protein homologue lacking
C2 domains-c), a novel linker protein that interacts with Rab27,
myosin Va/VIIa, and actin. J. Biol. Chem. 277, 43096-43103 [PubMed]
02-15) Peng W.,
Premkumar, A., Mossner, R., Fukuda, M., Lesch, K. P. and Simantov, R. (2002) Synaptotagmin
I and IV are differentially regulated in the brain by the recreational drug
3,4-methylenedioxymethamphetamine (MDMA). Mol. Brain Res. 108, 94-101 [PubMed]
i2001”Nj
01-1) Fukuda, M. and
Mikoshiba, K. (2001) Characterization of KIAA1427 protein as an atypical
synaptotagmin (Syt XIII). Biochem. J. 354,
249-257 [PubMed]
01-2) Fukuda, M. and
Mikoshiba, K. (2001) Synaptotagmin-like protein 1-3: A novel family of
C-terminal-type tandem C2 proteins. Biochem. Biophys. Res. Commun. 281, 1226-1233 [PubMed] iƒVƒiƒvƒgƒ^ƒOƒ~ƒ“‚ÉŽ—‚Ä”ñ‚È‚éV‹K•ªŽq‚𓯒肵Slp‚Æ–½–¼j
01-3)
Nalefski, E. A., Wisner, M. A., Chen, J. Z., Sprang, S. R., Fukuda, M.,
Mikoshiba, K. and Falke, J. J. (2001) C2 domains from different Ca2+
signaling pathways display functional and mechanistic diversity. Biochemistry 40,
3089-3100 [PubMed]
01-4) Gut, A.,
Kiraly, C. E., Fukuda, M., Mikoshiba, K., Wollheim, C. B. and Lang, J. (2001)
Expression and localisation of synaptotagmin isoforms in endocrine ƒÀ-cells:
Their function in insulin exocytosis. J. Cell Sci. 114, 1709-1716 [PubMed]
01-5) Fukuda, M.,
Ibata, K. and Mikoshiba, K. (2001) A unique spacer domain of synaptotagmin IV
is essential for Golgi localization. J. Neurochem. 77, 730-740 [PubMed]
01-6) Fukuda, M.,
Saegusa, C. and Mikoshiba, K. (2001) Novel splicing isoforms of
synaptotagmin-like proteins 2 and 3: Identification of the Slp homology domain.
Biochem.
Biophys. Res. Commun. 283,
513-519 [PubMed] iŒã‚ÉRab27‚ÌŒ‹‡ƒhƒƒCƒ“‚Æ‚µ‚Ä“¯’肳‚ê‚邱‚ƂɂȂéSHD—̈æ‚ðŒ©‚¢o‚·j
01-7) Fukuda, M.,
Saegusa, C., Kanno, E. and Mikoshiba, K. (2001) The C2A domain of double C2
protein ƒÁ contains a functional nuclear
localization signal. J. Biol. Chem. 276, 24441-24444 [PubMed]
01-8)
Fukuda, M. and Mikoshiba, K. (2001) Mechanism of the calcium-dependent
multimerization of synaptotagmin VII mediated by its first and second C2
domains. J.
Biol. Chem. 276,
27670-27676 [PubMed]
01-9) Michaut, M., De
Blas, G., Tomes, C. N., Yunes, R., Fukuda, M. and Mayorga, L. S. (2001)
Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. Dev. Biol.
235, 521-529 [PubMed]
01-10) Fukuda, M. and
Mikoshiba, K. (2001) Tac2-N, an atypical C-type tandem C2 protein localized in
the nucleus. FEBS
Lett. 503, 217-218 [PubMed]
01-11) Fukuda, M.,
Kanno, E., Ogata, Y. and Mikoshiba, K. (2001) Mechanism of the SDS-resistant
synaptotagmin clustering mediated by the cysteine cluster at the interface
between the transmembrane and spacer domains.
J. Biol. Chem. 276, 40319-40325 [PubMed]
01-12) Fukuda, M.,
Yamamoto, A. and Mikoshiba, K. (2001) Formation of crystalloid endoplasmic
reticulum induced by expression of synaptotagmin lacking the conserved WHXL
motif in the C terminus: Structural importance of the WHXL motif in the C2B
domain. J. Biol.
Chem. 276, 41112-41119 [PubMed]
01-13) Minagawa, T.,
Fukuda, M. and Mikoshiba, K. (2001) Distinct phosphoinositide binding
specificity of the GAP1 family proteins: Characterization of the pleckstrin
homology domains of mrasal and kiaa0538. Biochem. Biophys. Res. Commun. 288, 87-90 [PubMed]
01-14) Fukuda, M. and
Mikoshiba, K. (2001) The N-terminal cysteine cluster is essential for membrane
targeting of B/K protein. Biochem. J. 360,
441-448 [PubMed]
01-15) Kida, Y.,
Sakaguchi, M., Fukuda, M., Mikoshiba, K. and Mihara, K. (2001) Amino acid
residues before the hydrophobic region which are critical for membrane
translocation of the N-terminal domain of synaptotagmin II. FEBS Lett.
507, 341-345 [PubMed]
i2000”Nj
00-1) Ibata, K.,
Fukuda, M., Hamada, T., Kabayama, H. and Mikoshiba, K. (2000) Synaptotagmin IV
is present at the Golgi and distal parts of neurites. J. Neurochem. 74,
518-526 [PubMed]
00-2) Mizutani, A.,
Fukuda, M., Ibata, K., Shiraishi, Y. and Mikoshiba, K. (2000) SYNCRIP, a
cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts
with ubiquitous synaptotagmin isoforms. J. Biol. Chem. 275, 9823-9831 [PubMed]
00-3) Fukuda, M. and
Mikoshiba K. (2000) Genomic structures of synaptotagmin II protein: Comparison
of exon-intron organization of the synaptotagmin gene family. Biochem. Biophys.
Res. Commun. 270, 528-532
[PubMed]
00-4) Berton, F.,
Cornet, V., Iborra, C., Garrido, J., Dargent, B., Fukuda, M., Seagar, M. and
Marquèze, B. (2000) Synaptotagmin I and IV define
distinct populations of neuronal transport vesicles. Eur. J. Neurosci. 12, 1294-1302 [PubMed]
00-5) Detrait, E.,
Eddleman, C. S., Yoo, S., Fukuda, M., Nguyen, M. P., Bittner, G. D. and
Fishman, H. M. (2000) Axolemmal repair requires proteins that mediate synaptic
vesicle fusion. J.
Neurobiol. 44, 382-391 [PubMed]
00-6) Fukuda, M. and
Mikoshiba, K. (2000) Distinct self-oligomerization activities of synaptotagmin
family: Unique calcium-dependent oligomerization properties of synaptotagmin
VII. J. Biol.
Chem. 275, 28180-28185 [PubMed]
00-7) Kida, Y.,
Sakaguchi, M., Fukuda, M., Mikoshiba, K. and Mihara, K. (2000) Membrane
topogenesis of a type I signal-anchor protein, mouse synaptotagmin II, on the
endoplasmic reticulum. J. Cell Biol. 150, 719-730 [PubMed]
00-8) Fukuda, M. and
Mikoshiba, K. (2000) Calcium-dependent and -independent hetero-oligomerization
in the synaptotagmin family. J. Biochem. 128,
637-645 [PubMed]
00-9) Detrait, E. R.,
Yoo, S., Eddleman, C. S., Fukuda, M., Bittner, G. D. and Fishman, H. M. (2000)
Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+
and synaptotagmin. J. Neurosci. Res. 62, 566-573 [PubMed]
00-10) Fukuda, M. and
Mikoshiba, K. (2000) Doc2ƒÁ, a third isoform of double C2 protein, lacking
calcium-dependent phospholipid binding activity. Biochem. Biophys. Res. Commun. 276, 626-632 [PubMed]
00-11) Fukuda, M.,
Kabayama, H. and Mikoshiba, K. (2000) Drosophila
AD3 mutation of synaptotagmin impairs calcium-dependent self-oligomerization
activity. FEBS
Lett. 482, 269-272 [PubMed]
00-12) Fukuda, M. and
Mikoshiba, K. (2000) Expression of synaptotagmin I or II promotes neurite
outgrowth in PC12 cells. Neurosci. Lett. 295, 33-36 [PubMed]
00-13) Fukuda, M.,
Moreira, J. E., Liu, V., Sugimori, M., Mikoshiba, K. and Llinás, R. R.
(2000) Role of the conserved WHXL motif in the C terminus of synaptotagmin in
synaptic vesicle docking. Proc. Natl. Acad. Sci. USA 97, 14715-14719 [PubMed]
i1999”Nj
99-1) Kabayama, H.,
Takei, K., Fukuda, M., Ibata, K. and Mikoshiba, K. (1999) functional involvement of synaptotagmin
I/II C2A domain in neurite outgrowth of chick dorsal root ganglion neuron. Neuroscience 88, 999-1003 [PubMed]
99-2) Fukuda, M.,
Kanno, E. and Mikoshiba, K. (1999) Conserved N-terminal cysteine motif is
essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and
X. J. Biol.
Chem. 274, 31421-31427 [PubMed] i—Œ¤”]ƒZƒ“ƒ^[‚ɈڂÁ‚ÄAƒVƒiƒvƒgƒ^ƒOƒ~ƒ“ƒtƒ@ƒ~ƒŠ[‚ðƒ^[ƒQƒbƒg‚Æ‚µ‚½Œ¤‹†‚ðŠJŽnIj
99-3) Fukuda, M. and
Mikoshiba, K. (1999) A novel alternatively spliced variant of synaptotagmin VI
lacking a transmembrane domain: Implications for distinct functions of the two
isoforms. J.
Biol. Chem. 274,
31428-31434 [PubMed]
i1998”Nj
98-1) Sugimori, M.,
Tong, C.-K., Fukuda, M., Moreira, J. E., Kojima, T., Mikoshiba, K. and Llinás, R.
(1998) Presynaptic injection of syntaxin-specific antibodies blocks transmission
in the squid giant synapse. Neuroscience 86, 39-51 [PubMed]
98-2) Ibata, K.,
Fukuda, M. and Mikoshiba, K. (1998) Inositol 1,3,4,5-tetrakisphosphate binding
activities of neuronal and nonneuronal synaptotagmins: Identification of
conserved amino acid substitutions that abolish inositol
1,3,4,5-tetrakisphosphate binding to synaptotagmins III, V, and X. J. Biol. Chem.
273, 12267-12273 [PubMed]
i1997”Nj
97-1) Ohara-Imaizumi,
M., Fukuda, M., Niinobe, M., Misonou, H., Ikeda, K., Murakami, T., Kawasaki,
M., Mikoshiba, K. and Kumakura, K. (1997) Distinct roles of C2A and C2B domains
of synaptotagmin in the regulation of exocytosis in adrenal chromaffin cells. Proc. Natl. Acad.
Sci. USA 94, 287-291 [PubMed]
97-2) Mehrotra, B.,
Elliott, J. T., Chen, J., Olszewski, J. D., Profit, A. A., Chaudhary, A.,
Fukuda, M., Mikoshiba, K. and Prestwich, G. D. (1997) Selective photoaffinity
labeling of the inositol polyphosphate binding C2B domains of synaptotagmins. J. Biol. Chem.
272, 4237-4244 [PubMed]
97-3) Fukuda, M.,
Kojima, T. and Mikoshiba, K. (1997) Regulation by bivalent cations of
phospholipid binding to the C2A domain of synaptotagmin III. Biochem. J. 323, 421-425 [PubMed]
97-4) Mochida, S.,
Fukuda, M., Niinobe, M., Kobayashi, H. and Mikoshiba, K. (1997) Roles of
synaptotagmin C2 domains in neurotransmitter secretion and inositol
high-polyphosphate binding at mammalian cholinergic synapses. Neuroscience
77, 937-943 [PubMed]
97-5) Kojima, T.,
Fukuda, M., Watanabe, Y., Hamazato, F. and Mikoshiba, K. (1997)
Characterization of the pleckstrin homology domain of Btk as an inositol
polyphosphate and phosphoinositide binding domain. Biochem. Biophys. Res. Commun. 236, 333-339 [PubMed]
97-6) Lang, J.,
Fukuda, M., Zhang, H., Mikoshiba, K. and Wollheim, C. B. (1997) The first C2
domain of synaptotagmin is required for exocytosis of insulin from pancreatic ƒÀ-cells:
Action of synaptotagmin at low micromolar calcium. EMBO J. 16, 5837-5846 [PubMed]
97-7) Taketo, M.,
Yokoyama, S., Fukuda, M., Mikoshiba, K. and Higashida, H. (1997) Inosiotl-1,3,4,5-tetrakisphosphate
binding sites in control and ras-transformed NIH/3T3 fibroblasts. Biochem. Biophys.
Res. Commun. 239, 349-352
[PubMed]
97-8) Mizutani, A.,
Fukuda, M., Niinobe, M. and Mikoshiba, K. (1997) Regulation of
AP-2-synaptotagmin interaction by inositol high polyphosphates. Biochem. Biophys.
Res. Commun. 240, 128-131
[PubMed]
i1996”Nj
96-1) Fukuda, M.,
Kojima, T. and Mikoshiba, K. (1996) Phospholipid composition dependence of Ca2+-dependent
phospholipid binding to the C2A domain of synaptotagmin IV. J. Biol. Chem.
271, 8430-8434 [PubMed]
96-2) Fukuda, M. and
Mikoshiba, K. (1996) Structure-function relationships of the mouse Gap1m:
Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. J. Biol. Chem.
271, 18838-18842 [PubMed] iV‹K‚ÌIP4Œ‹‡’`”’Ž¿‚Æ‚µ‚ÄRab-GAP1m‚𓯒èIj
96-3) Kojima, T.,
Fukuda, M., Aruga, J. and Mikoshiba, K. (1996) Calcium-dependent phospholipid
binding to the C2A domain of a ubiquitous form of double C2 protein (Doc2ƒÀ). J. Biochem.
120, 671-676 [PubMed]
96-4) Fukuda, M.,
Kojima, T., Kabayama, H. and Mikoshiba, K. (1996) Mutation of the pleckstrin
homology domain of Bruton's tyrosine kinase in immunodeficiency impaired
inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303-30306 [PubMed] iV‹K‚ÌIP4Œ‹‡’`”’Ž¿‚Æ‚µ‚ăuƒ‹ƒgƒ“ƒ`ƒƒVƒ“ƒLƒi[ƒ[‚𓯒èIj
i1995”Nj
95-1) Fukuda, M.,
Kojima, T., Aruga, J., Niinobe, M. and Mikoshiba, K. (1995) Functional
diversity of C2 domains of synaptotagmin family: Mutational analysis of
inositol high polyphosphate binding domain. J. Biol. Chem. 270, 26523-26527 [PubMed] iŽv‚¢o‚Ì”ŽŽm˜_•¶‚̈ê‚ÂIIC2BƒhƒƒCƒ““à‚̃|ƒŠƒŠƒWƒ“‚Ì”z—ñ‚ÉIP4‚ªŒ‹‡‚·‚邱‚Ƃ𔌩Ij
95-2)
Mikoshiba, K., Fukuda, M., Moreira, J. E., Lewis, F. M. T., Sugimori, M.,
Niinobe, M. and Llinás, R. (1995) Role of
the C2A domain of synaptotagmin in transmitter release as determined by
specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad.
Sci. USA 92, 10703-10707 [PubMed]
95-3) Fukuda, M.,
Moreira, J. E., Lewis, F. M. T., Sugimori, M., Niinobe, M., Mikoshiba, K. and
Llinás, R. (1995) Role of the C2B domain of
synaptotagmin in vesicular release and recycling as determined by specific
antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad.
Sci. USA 92, 10708-10712 [PubMed] iŽv‚¢o‚Ì”ŽŽm˜_•¶‚̈ê‚ÂIIC2BƒhƒƒCƒ“‚݂̂̋@”\‚ð‘jŠQ‚·‚éR‘̂𓾂é‚Ì‚ª‘å•ςłµ‚½Bj
i1994”Nj
94-1) Akiyama, K.,
Fukuda, M., Kobayashi, N., Matsuoka, A. and Shikama, K. (1994) The
pH-depededent swinging-out of the distal histidine residue in ferric hemoglobin
of a midge larva (Tokunagayusurika
akamusi). Biochim.
Biophys. Acta 1208,
306-309 [PubMed]
94-2) Fukuda, M.,
Aruga, J., Niinobe, M., Aimoto, S. and Mikoshiba, K. (1994)
Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin
II. J. Biol.
Chem. 269, 29206-29211 [PubMed] iŽv‚¢o‚Ì”ŽŽm˜_•¶‚̈ê‚ÂIIIP4Žó—e‘̂Ƃµ‚ăVƒiƒvƒX¬–E‚É‘¶Ý‚·‚éƒVƒiƒvƒgƒ^ƒOƒ~ƒ“II‚𓯒èIj
94-3) Niinobe, M.,
Yamaguchi, Y., Fukuda, M. and Mikoshiba, K. (1994) Synaptotagmin is an inositol
polyphosphate binding protein: Isolation and characterizaion as an Ins
1,3,4,5-P4 binding
protein. Biochem.
Biophys. Res. Commun. 205,
1036-1042 [PubMed]
94-4) Llinás, R.,
Sugimori, M., Lang, E. J., Morita, M., Fukuda, M., Niinobe, M. and Mikoshiba,
K. (1994) The inositol high-polyphosphate series blocks synaptic transmission
by preventing vesicular fusion: A squid giant synapse study. Proc. Natl. Acad.
Sci. USA 91, 12990-12993 [PubMed]
94-5) Aruga, J.,
Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M. and Mikoshiba, K. (1994) A
novel zinc finger protein, zic, is involved in neurogenesis, especially in the
cell lineage of cerebellar granule cells. J. Neurochem. 63, 1880-1890 [PubMed]
i1993”Nj
93-1) Fukuda, M.,
Takagi, T. and Shikama, K. (1993) Polymorphic hemoglobin from a midge larva (Tokunagayusurika akamusi) can be divided
into two different types. Biochim. Biophys. Acta 1157, 185-191 [PubMed] iCŽm˜_•¶I’Þ‚è‰a‚Å’m‚ç‚ê‚Ä‚¢‚éƒAƒJƒ€ƒV‚̃wƒ‚ƒOƒƒrƒ“‚ÌŒ¤‹†‚Å‚·Bj
@