Œ¤‹†‹ÆÑ

 

 

u‘àE’˜‘vi‰p•¶j

 

1. Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M. and Mikoshiba, K. (1994) A molecular marker for cerebellar granule cell lineage. RIKEN Review 6, 17-18

 

2. Fukuda, M. and Mikoshiba, K. (1997) The function of inositol high polyphosphate binding proteins. BioEssays 19, 593-603 [PubMed]

 

3. Mikoshiba, K., Fukuda, M., Niinobe, M., Mochida, S., Sugimori, M. and Llinás, R. (1998) in The Adrenal Chromaffin Cell: Archtype and Exemplar of Cellular Signalling in Secretory Control. (Kanno, T., Nakazato, Y. and Kumakura, K., eds.) pp. 213-220, Hokkaido University Press, Sapporo

 

4. Mikoshiba, K., Fukuda, M., Ibata, K., Kabayama, H. and Mizutani, A. (1999) Role of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein, in neurotransmitter release and neurite outgrowth. Chem. Phys. Lipids 98, 59-67 [PubMed]

 

5. Fukuda, M. (2002) Slp and Slac2, novel families of Rab27 effectors that control Rab27-dependent membrane traffic. Recent Res. Dev. Neurochem. 5, 297-309

 

6. Fukuda, M. (2003) Synaptotagmins, Ca2+- and phospholipid-binding proteins that control Ca2+-regulated membrane trafficking. Recent Res. Dev. Chem. Phys. Lipids 1, 15-51

 

7. Fukuda, M. (2004) Rabphilin and Noc2 function as Rab27 effectors that control Ca2+-regulated exocytosis. Recent Res. Dev. Neurochem. 7, 57-69

 

8. Fukuda, M. (2005) Slp homology domain: A novel protein motif that specifically binds small GTPase Rab27. Recent Res. Dev. Biochem. 6, 13-29

 

9. Fukuda, M. (2005) Versatile role of Rab27 in membrane trafficking: Focus on the Rab27 effector families. J. Biochem. 137, 9-16 [PubMed]

 

10. Kuroda, T. S., Itoh, T. and Fukuda, M. (2005) Functional analysis of Slac2-a/melaonophilin as a linker protein between Rab27A and myosin Va in melanosome transport. Methods Enzymol. 403, 419-431 [PubMed]

 

11. Kuroda, T. S. and Fukuda, M. (2005) Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein. Methods Enzymol. 403, 431-444 [PubMed]

 

12. Fukuda, M. and Kanno, E. (2005) Analysis of the role of Rab27 effector Slp4-a/granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol. 403, 445-457 [PubMed]

 

13. Fukuda, M. (2005) Assay and functional interactions of Rim2 with Rab3. Methods Enzymol. 403, 457-468 [PubMed]

 

14. Fukuda, M. and Yamamoto, A. (2005) Assay of Rab binding specificity of rabphilin and Noc2: Target molecules for Rab27. Methods Enzymol. 403, 469-481 [PubMed]

 

15. Fukuda, M. (2006) Synaptotagmin 5. AfCS-Nature Molecule Pages (doi:10.1038/ mp.a002563.01) mƒŠƒ“ƒNn

 

16. Fukuda, M. (2006) Rab27 and its effectors in secretory granule exocytosis: A novel docking machinery composed of a Rab27·effector complex. Biochem. Soc. Trans. 34, 691-695 [PubMed]

 

17. Fukuda, M. (2007) The role of synaptotagmin and synaptotagmin-like protein (Slp) in regulated exocytosis. Molecular Mechanisms of Exocytosis (Regazzi, R., ed.) pp. 42-61, Landes Bioscience, Austin, TX, USA mƒŠƒ“ƒNn

 

18. Fukuda, M. and Sagi-Eisenberg, R. (2008) Confusion in the nomenclature of synaptotagmins V and IX: which is which? Calcium Binding Proteins 3, 1-4

 

19. Fukuda, M. (2008) Regulation of secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci. 65, 2801-2813 [PubMed]

 

20. Fukuda, M. and Itoh, T. (2008) Direct link between Atg protein and small GTPase Rab: Atg16L functions as a potential Rab33 effector in mammals. Autophagy 4, 824-826 [PubMed]

 

21. Fukuda, M. (2010) How can mammalian Rab small GTPases be comprehensively analyzed?: Development of new tools to comprehensively analyze mammalian Rabs in membrane traffic. Histol. Histopathol. 25, 1473-1480 [PubMed]

 

22. Fukuda, M. (2011) TBC proteins: GAPs for mammalian small GTPase Rab? Biosci. Rep. 31, 159-168 [PubMed] [WIKI]

 

23. Mori, Y. and Fukuda, M. (2011) Synaptotagmin IV acts as a multi-functional regulator of Ca2+-dependent exocytosis. Neurochem. Res. 36, 1222-1227 [PubMed]

 

24. Ishido, N., Kobayashi, H., Sako, Y., Arai, T., Fukuda, M. and Nakamura, T. (2011) How to make FRET biosensors for Rab family GTPases. Biosensors - Emerging Materials and Applications (Serra, P. A. ed.) pp. 81-98, INTECH, Rijeka, CroatiamƒŠƒ“ƒNn

 

25. Itoh, T. and Fukuda, M. (2011) A possible role of Atg8 homologues as a scaffold for signal transduction (2nd edition). Autophagy 7, 1080-1081 [PubMed]

 

26. Matsui, T. and Fukuda, M. (2011) Small GTPase Rab12 regulates transferrin receptor degradation: Implications for a novel membrane trafficking pathway from recycling endosomes to lysosomes. Cell. Logistics 1, 155-158 [PubMed]

 

27. Fukuda, M. (2012) Slp (synaptotagmin-like protein) Encyclopedia of Signaling Molecules 1st Edition (Choi, S. ed.) Part 20, pp. 1740-1746, Springer, Berlin Heidelberg, Germany mƒŠƒ“ƒNn

 

28. Ohbayashi, N. and Fukuda, M. (2012) Role of Rab family GTPases and their effectors in melanosomal logistics. J. Biochem. 151, 343-351 [PubMed]

 

29. Klionsky D. J. et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 [PubMed]

 

30. Fukuda, M. (2013) Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 14, 949-963 [PubMed]

 

31. Mori, Y. and Fukuda, M. (2013) Rabex-5 determines the neurite localization of its downstream Rab proteins in hippocampal neurons. Commun. Integr. Biol. 6, e25433 [PubMed]

 

32. Matsui, T. and Fukuda, M. (2014) Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes. Methods Enzymol. 534, 195-206 [PubMed]

 

33. Azouz, N. P., Fukuda, M., Rothenberg, M. E. and Sagi-Eisenberg, R. (2015) Investigating mast cell secretory granules: From biosynthesis to exocytosis. J. Vis. Exp. 95, e52505 [PubMed]

 

34. Ishibashi, K. and Fukuda, M. (2015) Atg16L1 protein regulates hormone secretion independent of autophagy. Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging (Hayat M.A. ed.), volume 7, pp. 103-112, Elsevier B V, Amsterdam, Netherlands mƒŠƒ“ƒNn

 

35. Yasuda, T., Mrozowska, P. S. and Fukuda, M. (2015) Functional analysis of Rab27A and its effector Slp2-a in renal epithelial cells. Methods Mol. Biol. 1298, 127-139 [PubMed]

 

36. Kobayashi, H., Etoh, K., Marubashi, S., Ohbayashi, N. and Fukuda, M. (2015) Measurement of Rab35 activity with the GTP-Rab35 trapper RBD35. Methods Mol. Biol. 1298, 207-216 [PubMed]

 

37. Mori, Y. and Fukuda, M. (2015) Assay of Rab17 and its guanine nucleotide exchange factor Rabex-5 in the dendrites of hippocampal neurons. Methods Mol. Biol. 1298, 233-243 [PubMed]

 

38. Fukuda, M. (2016) Lysosome-related organelles. Encyclopedia of Cell Biology (Bradshaw R. A. and Stahl P. D ed.) volume 2, pp. 235-242, Academic Press, Waltham, MA mƒŠƒ“ƒNn

 

39. Klionsky, D. J. et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222 [PubMed]

 

40. Fukuda, M. (2016) Multiple roles of VARP in endosomal trafficking: Rabs, retromer components and R-SNARE VAMP7 meet on VARP. Traffic 17, 709-719 [PubMed]

 

41. Ishida, M., Oguchi, M. E. and Fukuda, M. (2016) Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct. Funct. 41, 61-79 [PubMed] (•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I)

 

42. Mrozowska, P. S. and Fukuda, M. (2016) Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells. Small GTPases 7, 231-238 [PubMed]

 

43. Itoh, T. and Fukuda, M. (2017) Roles of Rab-GAPs in regulating autophagy. Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging (Hayat M.A. ed.), volume 11, pp. 143-157, Elsevier B V, Amsterdam, Netherlands mƒŠƒ“ƒNn

 

44. Ohbayashi, N., Fukuda, M. and Kanaho, Y. (2017) Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking. J. Biochem. 162, 65-71 [PubMed] (•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I) mƒŠƒ“ƒNn

 

45. Fukuda, M. (2018) Slp (synaptotagmin-like protein) Encyclopedia of Signaling Molecules 2nd Edition (Choi, S. ed.) pp. 5041-5047, Springer, Berlin Heidelberg, Germany mƒŠƒ“ƒNn

 

46. Oguchi, M. E. and Fukuda, M. (2018) Rab27 Encyclopedia of Signaling Molecules 2nd Edition (Choi, S. ed.) pp. 4378-4385, Springer, Berlin Heidelberg, Germany mƒŠƒ“ƒNn

 

47. Klein, O., Roded, A., Hirschberg, K., Fukuda, M., Galli, S. J. and Sagi-Eisenberg, R. (2018) Imaging FITC-dextran as a reporter for regulated exocytosis. J. Vis. Exp. 136, e57936 [PubMed]

 

48. Ohbayashi, N. and Fukuda, M. (2018) SNARE dynamics during melanosome maturation. Biochem. Soc. Trans. 46, 911-917 [PubMed]

 

49. Kuchitsu, Y. and Fukuda, M. (2018) Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies. Cells 7, 215 [PubMed]

 

50. Ohbayashi, N. and Fukuda, M. (2020) Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000 Res. 9, F1000 Faculty Rev-608 [PubMed]

 

51. Homma, Y. Hiragi, S. and Fukuda, M. (2021) Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 288, 36-55 [PubMed]iF1000Prime‚ÌRecommended paper‚Æ‚µ‚Ä‘I’èj[Most cited] [Certificate]

 

52. Fukuda, M. (2021) Rab GTPases: key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res. 34, 222235 [PubMed](•\Ž†‚ÉÌ—p‚³‚ê‚Ü‚µ‚½I) [Top cited article: Certificate]

 

53. Klionsky, D. J. et al. (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1-382 [PubMed]

 

54. Kinoshita, R., Homma, Y. and Fukuda, M. (2021) Methods for establishing Rab knockout MDCK cells. Methods Mol. Biol. 2293, 243-256 [PubMed]

 

55. Maruta, Y. and Fukuda, M. (2023) Lysosome-related organelles. Encyclopedia of Cell Biology 2nd edition (Bradshaw R. A., Hart, G. W, and Stahl P. D ed.) volume 2, pp. 281-290, Elsevier, Amsterdam, Netherlands mƒŠƒ“ƒNn

 

mƒgƒbƒv‚Ö–ß‚én

@

mƒz[ƒ€‚Ö–ß‚én