Œ¤‹†‹ÆÑ
u”íˆø—p”v
2025”N1ŒŽ1“úŒ»Ý‚Ì”•\˜_•¶‚Ì•½‹ÏƒCƒ“ƒpƒNƒgƒtƒ@ƒNƒ^[iIFj‚Í5.584i‘IF’l^”•\˜_•¶”F1898.57/340j‚Å‚·B‚Ü‚½A‚±‚ê‚ç‚̘_•¶‚Ì”íˆø—p”‚̇ŒviWeb of Sciencej‚Í29,920‚ÅA˜_•¶ˆê–{“–‚½‚è‚Ì”íˆø—p”‚Í89.31‚Å‚µ‚½i”íˆø—p”2000‰ñˆÈã‚̘_•¶2–{A1000‰ñˆÈã‚̘_•¶3–{A200‰ñˆÈã‚̘_•¶14–{A100‰ñˆÈã‚̘_•¶53–{A50‰ñˆÈã‚̘_•¶130–{Fh index = 76mN‰ñˆø—p‚³‚ꂽ˜_•¶‚ðN–{Ž‚ÂAh = NnjBŽå—v˜_•¶i‹¤’˜‚ðœ‚j‚Ì”íˆø—p”‚̃‰ƒ“ƒLƒ“ƒO‚͉º‹L‚Ì’Ê‚è‚Å‚·B‚æ‚èƒCƒ“ƒpƒNƒg‚Ì‚‚¢˜_•¶‚ð–ÚŽw‚µ‚ÄŠæ’£‚肽‚¢‚ÆŽv‚¢‚Ü‚·I
2024”N“x Research.com Œ¤‹†ŽÒƒ‰ƒ“ƒLƒ“ƒOi¶•¨ŠwA¶‰»Šw•ª–ìjF#84 (Japan ranking) #1497
(world ranking)
mŒ´’˜˜_•¶n
No.1)
Fukuda, M., Kuroda, T. S. and Mikoshiba, K. (2002)
Slac2-a/melanophilin, the missing link between Rab27 and myosin Va:
Implications of a tripartite protein complex for melanosome transport. J. Biol. Chem.
277, 12432-12436 [PubMed]i”íˆø—p”291jm•\ކn“–ŠYŒ¤‹†•ª–ì‚É‚¨‚¢‚Ä”íˆø—p—¦‚ÅãˆÊ1%‚É‚àƒ‰ƒ“ƒN‚³‚ê‚Ü‚µ‚½mƒŠƒ“ƒNnB
No.2)
Fukuda, M., Aruga, J., Niinobe,
M., Aimoto, S. and Mikoshiba,
K. (1994) Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin
II. J. Biol.
Chem. 269, 29206-29211 [PubMed]i”íˆø—p”236j
No.3) Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T. and Fukuda, M. (2008) Golgi-resident small
GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell
19, 2916-2925 [PubMed]
i”íˆø—p”217j
No.4) Fukuda, M., Kanno, E., Ishibashi, K.
and Itoh, T. (2008) Large
scale screening for novel Rab effectors reveals unexpected broad Rab binding
specificity. Mol.
Cell. Proteomics 7, 1031-1042 [PubMed] i”íˆø—p”194j
No.5)
Fukuda, M., Kojima, T., Kabayama, H. and Mikoshiba,
K. (1996) Mutation of the pleckstrin homology domain
of Bruton's tyrosine kinase in immunodeficiency impaired inositol
1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303-30306 [PubMed]i”íˆø—p”189j
No.6)
Kuroda, T. S., Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) The Slp homology
domain of synaptotagmin-like proteins 1-4 and Slac2
functions as a novel Rab27A binding domain. J. Biol. Chem. 277, 9212-9218 [PubMed]i”íˆø—p”177j
No.7)
Fukuda, M., Kojima, T., Aruga, J., Niinobe, M. and Mikoshiba, K.
(1995) Functional diversity of C2 domains of synaptotagmin
family: Mutational analysis of inositol high polyphosphate binding domain. J. Biol. Chem.
270, 26523-26527 [PubMed]i”íˆø—p”168j
No.8) Fukuda,
M. (2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin,
and Noc2: Identification of a critical determinant of Rab3A/Rab27A recognition
by Rim2. J.
Biol. Chem. 278,
15373-15380 [PubMed]i”íˆø—p”156j
No.9) Tsuboi, T. and
Fukuda, M. (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core
vesicle exocytosis in PC12 cells. J. Cell Sci. 119, 2196-2203 [PubMed] i”íˆø—p”151j
No.10)
Fukuda, M., Kanno, E. and Mikoshiba, K. (1999)
Conserved N-terminal cysteine motif is essential for homo- and heterodimer
formation of synaptotagmins III, V, VI, and X. J. Biol. Chem.
274, 31421-31427 [PubMed]i”íˆø—p”150j
No.11)
Fukuda, M., Moreira, J. E., Lewis, F. M. T., Sugimori,
M., Niinobe, M., Mikoshiba,
K. and Llinás, R. (1995) Role of the C2B domain of synaptotagmin in vesicular release and recycling as
determined by specific antibody injection into the squid giant synapse
preterminal. Proc.
Natl. Acad. Sci. USA 92,
10708-10712 [PubMed]i”íˆø—p”144j
No.12) Fukuda,
M. and Kuroda, T. S. (2002) Slac2-c (synaptotagmin-like
protein homologue lacking C2 domains-c), a novel linker
protein that interacts with Rab27, myosin Va/VIIa, and actin. J. Biol. Chem. 277, 43096-43103 [PubMed] i”íˆø—p”136j
No.13)
Kuroda, T. S. and Fukuda, M. (2004) Rab27A-binding protein Slp2-a is required
for peripheral melanosome distribution and elongated cell shape in melanocytes.
Nature Cell
Biol. 6,
1195-1203 [PubMed]i”íˆø—p”127j
No.14) Itoh, T., Kanno, E., Uemura, T., Waguri, S.
and Fukuda, M. (2011) OATL1, a novel autophagosome-resident Rab33B-GAP,
regulates autophagosomal maturation. J. Cell Biol.
192, 839-853 [PubMed]i”íˆø—p”125j
No.15) Fukuda, M., Kowalchyk,
J. A., Zhang, X., Martin, T. F. J. and Mikoshiba, K.
(2002) Synaptotagmin IX regulates Ca2+-dependent
secretion in PC12 cells. J. Biol. Chem. 277, 4601-4604 [PubMed]i”íˆø—p”118j
No.16)
Itoh, T., Satoh, M., Kanno, E. and Fukuda, M. (2006) Screening for target Rabs
of TBC (Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding
activity. Genes
Cells 11, 1023-1037 [PubMed]i”íˆø—p”123j
No.17)
Mikoshiba, K., Fukuda, M., Moreira, J. E., Lewis, F.
M. T., Sugimori, M., Niinobe,
M. and Llinás, R. (1995) Role of the C2A domain of synaptotagmin in transmitter release as determined by
specific antibody injection into the squid giant synapse preterminal. Proc. Natl. Acad.
Sci. USA 92, 10703-10707 [PubMed]i”íˆø—p”115j
No.18) Kuroda, T. S., Ariga, H. and Fukuda, M. (2003) The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes. Mol. Cell. Biol. 23, 5245-5255 [PubMed]i”íˆø—p”105j
No.19)
Fukuda, M. and Mikoshiba, K. (1999) A novel
alternatively spliced variant of synaptotagmin VI
lacking a transmembrane domain: Implications for distinct functions of the two
isoforms. J.
Biol. Chem. 274,
31428-31434 [PubMed]i”íˆø—p”103j
m‘àn
No.1) Fukuda, M. (2008) Regulation of
secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci. 65,
2801-2813 [PubMed] i”íˆø—p”311j
No.2) Homma, Y. Hiragi,
S. and Fukuda, M. (2021) Rab family of small GTPases: an updated view on their
regulation and functions. FEBS J. 288, 36-55 [PubMed]iF1000Prime‚ÌRecommended
paper‚Æ‚µ‚Ä‘I’èj[Certificate]i”íˆø—p”226j
No.3) Fukuda, M. (2005) Versatile role of Rab27 in membrane
trafficking: Focus on the Rab27 effector families. J. Biochem. 137, 9-16 [PubMed]i”íˆø—p”184j
No.4) Fukuda, M. (2013) Rab27 effectors, pleiotropic
regulators in secretory pathways. Traffic 14, 949-963 [PubMed] i”íˆø—p”161j
No.5) Fukuda, M. (2011) TBC proteins: GAPs for mammalian small
GTPase Rab? Biosci. Rep. 31,
159-168 [PubMed]i”íˆø—p”150j
No.6) Fukuda, M. and Mikoshiba,
K. (1997) The function of inositol high polyphosphate binding proteins. BioEssays 19, 593-603 [PubMed]i”íˆø—p”90j
No.7) Kuchitsu, Y. and Fukuda, M.
(2018) Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies. Cells 7, 215 [PubMed] [PubMed]i”íˆø—p”65j
@