1.
Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M. and Mikoshiba,
K. (1994) A molecular marker for cerebellar granule cell lineage. RIKEN Review
6, 17-18
2. Fukuda, M. and Mikoshiba, K. (1997)
The function of inositol high polyphosphate binding proteins. BioEssays 19, 593-603
[PubMed]
3.
Mikoshiba, K., Fukuda, M., Niinobe, M., Mochida, S., Sugimori, M. and Llinás, R. (1998) in The Adrenal Chromaffin Cell: Archtype
and Exemplar of Cellular Signalling in Secretory Control. (Kanno,
T., Nakazato, Y. and Kumakura, K., eds.) pp. 213-220, Hokkaido University
Press, Sapporo
4.
Mikoshiba, K., Fukuda, M., Ibata, K., Kabayama, H. and Mizutani, A. (1999) Role
of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein,
in neurotransmitter release and neurite outgrowth. Chem. Phys. Lipids 98, 59-67 [PubMed]
5.
Fukuda, M. (2002) Slp and Slac2, novel families of Rab27 effectors that control
Rab27-dependent membrane traffic. Recent
Res. Dev. Neurochem. 5,
297-309
6.
Fukuda, M. (2003) Synaptotagmins, Ca2+- and phospholipid-binding
proteins that control Ca2+-regulated membrane trafficking. Recent Res. Dev. Chem. Phys. Lipids
1, 15-51
7.
Fukuda, M. (2004) Rabphilin and Noc2 function as Rab27 effectors that control
Ca2+-regulated exocytosis. Recent Res. Dev. Neurochem. 7, 57-69
8.
Fukuda, M. (2005) Slp homology domain: A novel protein motif that specifically
binds small GTPase Rab27. Recent
Res. Dev. Biochem. 6, 13-29
9.
Fukuda, M. (2005) Versatile role of Rab27 in membrane trafficking: Focus on the
Rab27 effector families. J. Biochem.
137, 9-16 [PubMed]
10.
Kuroda, T. S., Itoh, T. and Fukuda, M. (2005) Functional analysis of
Slac2-a/melaonophilin as a linker protein between Rab27A and myosin Va in
melanosome transport. Methods
Enzymol. 403, 419-431 [PubMed]
11.
Kuroda, T. S. and Fukuda, M. (2005) Identification and biochemical analysis of
Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein. Methods Enzymol.
403, 431-444 [PubMed]
12.
Fukuda, M. and Kanno, E. (2005) Analysis of the role of Rab27 effector
Slp4-a/granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol.
403, 445-457 [PubMed]
13.
Fukuda, M. (2005) Assay and functional interactions of Rim2 with Rab3. Methods Enzymol.
403, 457-468 [PubMed]
14.
Fukuda, M. and Yamamoto, A. (2005) Assay of Rab binding specificity of rabphilin
and Noc2: Target molecules for Rab27. Methods Enzymol.
403, 469-481 [PubMed]
15.
Fukuda, M. (2006) Synaptotagmin 5. AfCS-Nature
Molecule Pages (doi:10.1038/ mp.a002563.01) [link]
16. Fukuda, M. (2006) Rab27 and its
effectors in secretory granule exocytosis: A novel docking machinery composed
of a Rab27·effector
complex. Biochem. Soc. Trans. 34, 691-695 [PubMed]
17.
Fukuda, M. (2007) The role of synaptotagmin and synaptotagmin-like protein
(Slp) in regulated exocytosis. Molecular
Mechanisms of Exocytosis (Regazzi, R., ed.) pp. 42-61, Landes Bioscience, Austin, TX, USA [link]
18. Fukuda, M. and Sagi-Eisenberg, R. (2008) Confusion in the nomenclature of synaptotagmins V and IX:
which is which? Calcium Binding Proteins 3, 1-4
19. Fukuda, M. (2008) Regulation of
secretory vesicle traffic by Rab small GTPases. Cell. Mol. Life Sci. 65,
2801-2813 [PubMed]
20. Fukuda, M. and Itoh, T. (2008) Direct link between Atg protein and small GTPase
Rab: Atg16L functions as a potential Rab33 effector in mammals. Autophagy 4, 824-826 [PubMed]
21. Fukuda, M. (2010) How can mammalian Rab small GTPases be
comprehensively analyzed?: Development of new tools to comprehensively analyze
mammalian Rabs in membrane traffic. Histol.
Histopathol. 25, 1473-1480 [PubMed]
22. Fukuda, M. (2011) TBC proteins: GAPs for mammalian small GTPase Rab? Biosci. Rep. 31, 159-168 [PubMed]
23. Mori, Y. and Fukuda, M. (2011) Synaptotagmin IV acts as a multi-functional regulator of Ca2+-dependent
exocytosis. Neurochem.
Res. 36,
1222-1227 [PubMed]
24. Ishido, N., Kobayashi, H., Sako, Y., Arai, T., Fukuda, M. and Nakamura, T. (2011)
How to make FRET biosensors for Rab family GTPases. Biosensors -
Emerging Materials and Applications (Serra, P. A. ed.) pp. 81-98, INTECH, Rijeka, Croatia [link]
25. Itoh, T. and Fukuda, M. (2011) A
possible role of Atg8 homologues as a scaffold for signal transduction. Autophagy 7, 1080-1081 [PubMed]
26. Matsui, T. and Fukuda, M. (2011) Small GTPase Rab12 regulates transferrin receptor degradation: Implications for a novel membrane trafficking pathway from recycling endosomes to lysosomes. Cell. Logistics 1, 155-158 [PubMed]
27. Fukuda, M. (2012) Slp (synaptotagmin-like
protein) Encyclopedia
of Signaling Molecules 1st Edition (Choi, S. ed.) Part 20, pp.
1740-1746, Springer, Berlin Heidelberg, Germany [link]
28. Ohbayashi, N. and Fukuda, M. (2012) Role
of Rab family GTPases and their effectors in melanosomal logistics. J. Biochem.
151, 343-351 [PubMed]
29. Klionsky D. J. et al. (2012) Guidelines for the use and interpretation of assays
for monitoring autophagy (2nd edition). Autophagy 8,
445-544 [PubMed]
30. Fukuda, M. (2013) Rab27 effectors, pleiotropic regulators in
secretory pathways. Traffic 14, 949-963 [PubMed]
31. Mori, Y. and Fukuda, M. (2013) Rabex-5 determines the neurite localization of its downstream Rab proteins in hippocampal neurons. Commun. Integr. Biol. 6, e25433 [PubMed]
32. Matsui, T. and Fukuda, M. (2014) Methods of analysis of the membrane
trafficking pathway from recycling endosomes to lysosomes. Methods
Enzymol. 534,
195-206 [PubMed]
33. Azouz, N. P., Fukuda, M., Rothenberg, M. E. and Sagi-Eisenberg, R.
(2015) Investigating mast cell secretory granules: From biosynthesis to
exocytosis. J. Vis. Exp. 95, e52505 [PubMed]
34. Ishibashi, K. and Fukuda, M. (2015) Atg16L1 protein regulates
hormone secretion independent of autophagy. Autophagy: Cancer, other pathologies, inflammation,
immunity, infection, and aging (Hayat M.A. ed.), volume 7, pp. 103-112, Elsevier B V, Amsterdam,
Netherlands [link]
35. Yasuda, H., Mrozowska, P. S. and
Fukuda, M. (2015) Functional analysis of Rab27A and its effector Slp2-a in
renal epithelial cells. Methods Mol. Biol. 1298,
127-139 [PubMed]
36. Kobayashi, T., Etoh, K., Marubashi, S., Ohbayashi, N. and Fukuda, M.
(2015) Measurement of Rab35 activity with the GTP-Rab35 trapper RBD35. Methods
Mol. Biol. 1298,
207-216 [PubMed]
37. Mori, Y. and Fukuda, M. (2015) Assay of Rab17 and its guanine
nucleotide exchange factor Rabex-5 in the dendrites of hippocampal neurons. Methods
Mol. Biol. 1298,
233-243 [PubMed]
38. Fukuda, M. (2016) Lysosome-related organelles. Encyclopedia of Cell Biology
(Bradshaw R. A. and Stahl P. D ed.) volume 2,
pp. 235-242, Academic Press, Waltham, MA [link]
39. Klionsky, D. J. et al. (2016)
Guidelines for the use and interpretation of assays for monitoring autophagy
(3rd edition). Autophagy
12, 1-222 [PubMed]
40. Fukuda, M. (2016) Multiple roles of VARP in endosomal trafficking:
Rabs, retromer components and R-SNARE VAMP7 meet on VARP. Traffic 17, 709-719 [PubMed]
41. Ishida, M., Oguchi, M. E. and Fukuda, M. (2016) Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct. Funct. 41, 61-79 [PubMed]
42. Mrozowska, P. S. and Fukuda, M. (2016)
Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells.
Small GTPases
7, 231-238 [PubMed]
43. Itoh, T. and Fukuda, M. (2017) Roles of Rab-GAPs in regulating autophagy. Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging (Hayat M.A. ed.), volume 11, pp. 143-157, Elsevier B V, Amsterdam, Netherlands [link]
44. Ohbayashi, N., Fukuda, M. and Kanaho, Y. (2017) Rab32 subfamily small
GTPases: pleiotropic Rabs in endosomal trafficking. J. Biochem. 162, 65-71 [PubMed]
45. Fukuda, M. (2018) Slp (synaptotagmin-like
protein) Encyclopedia
of Signaling Molecules 2nd Edition (Choi, S. ed.) pp.
5041-5047, Springer, Berlin Heidelberg, Germany [link]
46. Oguchi, M. E. and Fukuda,
M. (2018) Rab27 Encyclopedia
of Signaling Molecules 2nd Edition (Choi, S. ed.) pp.
4378-4385, Springer, Berlin Heidelberg, Germany [link]
47. Klein, O., Roded, A., Hirschberg, K., Fukuda, M., Galli, S. J. and Sagi-Eisenberg, R. (2018) Imaging FITC-dextran as a reporter for
regulated exocytosis. J. Vis. Exp. 136,
e57936 [PubMed]
48. Ohbayashi, N. and Fukuda, M. (2018) SNARE dynamics
during melanosome maturation. Biochem. Soc. Trans. 46, 911-917 [PubMed]
49. Kuchitsu,
Y. and Fukuda, M. (2018) Revisiting Rab7 functions in mammalian
autophagy: Rab7 knockout studies. Cells 7, 215 [PubMed]
50. Ohbayashi,
N. and Fukuda, M. (2020) Recent advances in understanding the molecular basis
of melanogenesis in melanocytes. F1000 Res. 9, F1000 Faculty Rev-608 [PubMed]
51. Homma,
Y. Hiragi, S. and Fukuda, M. (2021) Rab family of small GTPases: an updated
view on their regulation and functions. FEBS J. 288, 36-55 [PubMed] [Certificate]
52. Fukuda,
M. (2021) Rab GTPases: key players in melanosome biogenesis, transport, and
transfer. Pigment Cell Melanoma Res. 34,
222–235 [PubMed][Cover]
53. Klionsky, D. J. et al.
(2021) Guidelines for the use and interpretation of assays for monitoring
autophagy (4th edition). Autophagy 17,
1-382 [PubMed]
54. Kinoshita, R., Homma, Y. and Fukuda, M. (2021) Methods for
establishing Rab knockout MDCK cells. Methods Mol. Biol. 2293, 243-256 [PubMed]
55. Maruta, Y. and Fukuda, M. (2023) Lysosome-related organelles. Encyclopedia of
Cell Biology 2nd edition (Bradshaw R. A., Hart, G. W. and Stahl P. D.
ed.) volume 2, pp. 281-290,
Elsevier, Amsterdam, Netherlands [link]
56. Komori, T. and Fukuda, M. (2024) Two roads diverged in a cell:
Insights from differential exosome regulation in polarized cells. Front Cell Dev.
Biol. 12, 1451988 [PubMed]
57. Fukuda, M. (2025) Mechanisms of asymmetrical
exosome release from polarized epithelial cells: Implications for the molecular
basis of exosomal heterogeneity. Extracellular Fine Particles (Baba, Y., Hanayama,
R., Akita, H. and Yasui, T. ed.) pp. 27-38, Springer Singapore, Singapore [link]