i2025”Nj
25-1) Haga, K. and Fukuda, M. (2025) Comprehensive knockout analysis of the
RAB family small GTPases reveals an overlapping role of RAB2 and RAB14 in
autophagosome maturation. Autophagy 21, 21–36 [PubMed]
(Selected as a cover of the
issue!)
25-2) Hata, R., Sugawara, A. and Fukuda, M. (2025) Rab10 function in tubular
endosome formation requires the N-terminal K3 residue and is disrupted by
N-terminal tagging. J. Cell Sci. 138,
jcs.263649 [PubMed]
25-3) Nakashima, S. and Fukuda, M. (2025) Identification of Rab
GTPase-activating proteins required for tubular endosome formation. Traffic
26, e70007 [PubMed]
25-4) Sugawara, A.,
Maruta, Y. and Fukuda, M. (2025) AID-2~RBD27, an
auxin-inducible degron-based Rab27 trapper that reversibly inhibits the
function of Rab27A in melanocytes. J. Cell Sci. 138, jcs.263878 [PubMed]
i2024”Nj
24-1) Sazki-Hagenbach, P., Kleeblatt,
E., Fukuda, M., Ali, H. and Sagi-Eisenberg, R. (2024) The underlying Rab
network of MRGPRX2-stimulated secretion unveils the impact of receptor
trafficking on secretory granule biogenesis and secretion. Cells 13, 93 [PubMed]
24-2) Nakamura, H. and Fukuda, M. (2024) Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Sci. Rep. 14, 2529 [PubMed]
24-3) Omari, S., Roded, A., Eisenberg, M., Ali, H., Fukuda, M., Galli, S. J. and Sagi-Eisenberg, R. (2024) Mast cell secretory granule fusion with amphisomes coordinates their homotypic fusion and release of exosomes. Cell Rep. 43, 114482 [PubMed]
i2023”Nj
23-1) Shikanai, M., Ito, S., Nishimura, Y.,
Akagawa, R., Fukuda, M., Yuzaki, M., Nabeshima, Y.
and Kawauchi, T. (2023) Rab21 regulates caveolin-1-mediated endocytic
trafficking to promote immature neurite pruning. EMBO Rep. 24, e51475 [PubMed]
23-2) Nakashima, S., Matsui, T. and Fukuda, M. (2023) Vps9d1 regulates
tubular endosome formation through specific activation of Rab22A. J. Cell Sci.
136, jcs260522 [PubMed]
23-3) Ishiyama, S., Hasegawa, T., Sugeno, N., Kobayashi, J., Yoshida, S., Miki, Y.,
Wakabayashi, K., Fukuda, M., Kawata, Y., Nakamura, T., Sato, K., Ezura, M.,
Kikuchi, A., Takeda, A. and Aoki, M. (2023) Sortilin
acts as an endocytic receptor for ƒ¿-synuclein fibril. FASEB J. 37, e23017 [PubMed]
23-4) Komori, T., Kuwahara, T., Fujimoto, T., Sakurai, M., Koyama-Honda, I., Fukuda, M. and Iwatsubo, T. (2023) Phosphorylation of Rab29 at Ser185 regulates its localization and role in the lysosomal stress response in concert with LRRK2. J. Cell Sci. 136, jcs.261003 [PubMed]
23-5) Brauer, N., Maruta, Y., Strege, K., Oschlies, I., Nakamura, H., Lisci, M., Böhm, S., Lehmberg, K., Brandhoff, L., Hennies, H. C., Ehl, S. R. Parvaneh, N., Kappler, W., Fukuda, M., Griffiths, G. M., Niehues, T. and Ammann, S. K. (2023) Immunodeficiency with susceptibility to lymphoma with complex genotype affecting energy metabolism (FBP1, ACAD9) and vesicle trafficking (RAB27A). Front. Immunol. 14, 1151166 [PubMed]
23-6) Noda, K., Lu, S.-L., Chen, S., Tokuda, K., Li, Y., Hao, F., Wada, Y., Sun-Wada, G.-H., Murakami, S., Fukuda, M., Itoh, T. and Noda, T. (2023) Characterization of Rab32- and Rab38-positive lysosome-related organelles in osteoclasts and macrophages. J. Biol. Chem. 299, 105191 [PubMed]
23-7) Matsui, T., Sakamaki, Y., Hiragi, S. and Fukuda, M. (2023) VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct. Funct. 48, 187–198 [PubMed]
23-8) Tokuda, K., Lu, S.-L., Zhang, Z., Kato, Y., Chen, S., Noda, K., Hirose, K., Usami, Y., Uzawa, N., Murakami, S., Toyosawa, S., Fukuda, M., Sun-Wada, G.-H., Wada, Y. and Noda T. (2023) Rab32 and Rab38 maintain bone homeostasis by regulating intracellular traffic in osteoclasts. Cell Struct. Funct., 48, 223–239 [PubMed]
23-9) Rios, J. J., Li, Y., Paria, N., Bohlender, R. J., Huff, C., Rosenfeld,
J. A., Liu, P., Bi, W., Haga, K., Fukuda, M., Vashisth, S., Kaur, K., Chahrour, M., Bober, M. B., Duker, A. L., Ladha, F. A.,
Hanchard, N. A., Atala, K., Khanshour, A. M., Smith,
L., Wise, C. A. and Delgado, M. R. (2023) RAB1A
haploinsufficiency phenocopies the 2p14-p15 microdeletion and is associated
with impaired neuronal differentiation. Am. J. Hum. Genet. 110, 2103-2111 [PubMed]
i2022”Nj
22-1) Oguchi, M. E., Homma, Y. and Fukuda, M. (2022) The N-terminal Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells. Small GTPases 13, 77-83 [PubMed]
22-2) Matsui, T., Sakamaki, Y., Nakashima, S. and Fukuda, M. (2022) Rab39 and
its effector UACA regulate basolateral exosome release from polarized
epithelial cells. Cell Rep. 39, 110875 [PubMed]
22-3) Naß, J., Koerdt, S. N., Biesemann, A., Chehab, T., Yasuda, T., Fukuda, M., Martín-Belmonte,
F. and Gerke, V. (2022) Tip-end fusion of a rod-shaped secretory organelle. Cell. Mol. Life
Sci. 79, 344 [PubMed]
22-4) Hiragi, S., Matsui, T., Sakamaki, Y. and
Fukuda, M. (2022) TBC1D18 is a Rab5-GAP that coordinates endosome maturation
together with Mon1. J. Cell Biol. 221,
e202201114 [PubMed]
22-5) Maruta, Y. and Fukuda, M. (2022) Large Rab GTPase Rab44 regulates
microtubule-dependent retrograde melanosome transport in melanocytes. J. Biol. Chem.
298, 102508 [PubMed]
22-6) Nishizawa, A., Maruta, Y. and Fukuda, M. (2022) Rab32/38-dependent and
-independent transport of tyrosinase to melanosomes in B16-F1 melanoma cells. Int. J. Mol. Sci.
23,
14144 [PubMed]
i2021”Nj
21-1) Urrutia, P. J., Bodaleo, F., Bórquez, D. A., Homma, Y., Rozes-Salvador, V., Villablanca, C., Conde, C., Fukuda, M. and González-Billault, C. (2020) Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a. J. Neurosci. 41, 1636-1649 [PubMed]
21-2) Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. and Fukuda, M. (2020) ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 [PubMed]
21-3) Osaki, F., Matsui, T., Hiragi, S., Homma, Y.
and Fukuda, M. (2021) RBD11, a bioengineered Rab11-binding module for
visualizing and analyzing endogenous Rab11. J. Cell
Sci. 134, jcs257311 [PubMed]
21-4) Homma, Y. and Fukuda, M. (2021) Knockout analysis of Rab6 effector proteins revealed the role of VPS52 in the secretory pathway. Biochem. Biphys. Res. Common. 561, 151-157 [PubMed]
21-5) Omar, J., Rosenbaum, E., Efergan, A., Abu Sneineh, B., Yeheskel,
A., Maruta, Y. Fukuda, M. and Sagi-Eisenberg, R. (2021) Biochemical and
structural insights into Rab12 interactions with RILP and its family members. Sci. Rep.
11, 10317 [PubMed]
21-6) Ganga, A. K., Kennedy, M. C., Oguchi, M. E., Gray, S. D., Oliver, K.
E., Knight, T. A., De La Cruz, E. M., Homma, Y., Fukuda, M. and Breslow, D. K.
(2021) Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Curr. Biol. 31, 2895-2905 [PubMed]
21-7) Komaki, K., Takano, T., Sato, Y., Asada, A., Ikeda, S., Yamada, K.,
Wei, R., Huo, A., Fukuchi, A., Saito, T., Ando, K., Murayama, S., Araki, W., Kametani, F., Hasegawa, M., Iwatsubo,
T., Tomomura, M., Fukuda, M., Hisanaga,
S.-I. (2021) Lemur tail kinase 1 (LMTK1) regulates the endosomal localization
of ƒÀ-secretase BACE1. J. Biochem.
170, 729–738 [PubMed]
21-8) Trofimenko, E., Homma, Y., Fukuda, M. and
Widmann, C. (2021) The endocytic pathway taken by cationic substances requires
Rab14 but not Rab5 and Rab7. Cell Rep. 37, 109945 [PubMed]
21-9) Hatoyama, Y., Homma, Y., Hiragi, S. and Fukuda, M. (2021) Establishment and analysis of conditional Rab1- and Rab5-knockout cells using the auxin-inducible degron system. J. Cell Sci. 134, jcs259184 [PubMed]
i2020”Nj
20-1) Dolce, L. G., Ohbayashi,
N., da Silva, D. F. C., Ferrari, A. J. R., Pirolla,
R. A. S., Schwarzer, A. C. de A. P., Zanphorlin, L.
M., Cabral, L., Fioramonte, M., Ramos, C. H. I., Gozzo,
F. C., Fukuda, M., de Giuseppe P. O. and Murakami, M.
T. (2020) Unveiling the interaction between the
molecular motor Myosin Vc and the small GTPase Rab3A.
J. Proteomics
212, 103549 [PubMed]
20-2) Kabayama, H., Takeuchi, M., Tokushige, N.,
Muramatsu, S. I., Kabayama, M., Fukuda, M., Yamada, Y. and Mikoshiba,
K. (2020) An ultra-stable cytoplasmic antibody engineered for in vivo applications.
Nat. Commun.
11, 336
20-3) Ono, S., Otomo, A., Murakoshi S., Mitsui, S.,
Sato, K., Fukuda, M. and Hadano, S. (2020) ALS2, the
small GTPase Rab17-interacting protein, regulates maturation and sorting of
Rab17-associated endosomes. Biochem. Biophys. Res.
Commun. 523, 908-915 [PubMed]
20-4) Kinoshita, R., Homma, Y. and Fukuda, M. (2020) Rab35–GEFs, DENND1A and folliculin differentially regulate podocalyxin trafficking in two- and three-dimensional epithelial cell cultures. J. Biol. Chem. 295, 3652-3663 [PubMed]
20-5) Marubashi, S. and Fukuda, M. (2020) Rab7B/42 is functionally involved in protein degradation on melanosomes in keratinocytes. Cell Struct. Funct. 45, 45-55 [PubMed]
20-6) Wei, R., Sugiyama, A., Sato, Y., Nozumi, M.,
Nishino, H., Takahashi, M., Saito, T., Ando, K., Fukuda, M., Tomomura, M., Igarashi, M. and Hisanaga,
S.-I. (2020) Isoform-dependent subcellular localization of LMTK1A and LMTK1B and their
roles in axon outgrowth and spine formation. J.
Bichoem. 168, 23–32 [PubMed]
20-7) Murata, T., Unno, Y. Fukuda, M. and Utsunomiya-Tate, N. (2020) The dynamic
structure of Rab35 is stabilized in the presence of GTP under physiological
conditions. Biochem. Biophys. Rep. 23, 100776 [PubMed]
20-8) Oguchi, M. E., Okuyama, K., Homma, Y. and Fukuda, M. (2020) A comprehensive analysis of Rab GTPases reveals a role for Rab34 in serum starvation-induced primary ciliogenesis. J. Biol. Chem. 295, 12674-12685 [PubMed]
20-9) Mizushima, T., Jiang, G., Kawahara, T., Li, P., Han, B., Inoue, S.,
Ide, H., Kato, I., Jalalizadeh, M., Miyagi, E.,
Fukuda, M., Reis, L. O. and Miyamoto, H. (2020) Androgen receptor signaling reduces
the efficacy of Bacillus Calmette-Guérin therapy for bladder
cancer via modulating Rab27b-induced exocytosis. Mol. Cancer Ther. 19, 1930-1942 [PubMed]
20-10) Kuwahara, T., Kai, F., Komori, T., Sakurai, M., Yoshii, G., Eguchi, T., Fukuda, M. and Iwatsubo, T. (2020) Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol. Dis. 145, 105081 [PubMed]
20-11) Bhat, S., Ljubojevic, N., Zhu, S., Fukuda, M., Echard, A. and Zurzolo C. (2020) Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci. Rep. 10, 16803 [PubMed]
20-12) Murakawa, T., Kiger, A. A., Sakamaki, Y., Fukuda, M. and Fujita, N.
(2020) An autophagy-dependent tubular lysosomal network synchronizes degradative
activity required for muscle remodeling. J. Cell Sci. 133, jcs248336
20-13) Ohishi, Y., Ammann, S., Ziaee, V., Strege, K., Groß, M., Amos, C. V., Shahrooei, M., Ashournia, P., Razaghian, An., Griffiths, G. M., Ehl, S., Fukuda, M. and Parvaneh, N. (2020) Griscelli syndrome type 2 sine albinism: unraveling differential RAB27A effector engagement. Front. Immunol. 11, 612977 [PubMed]
20-14) Yoshikawa-Murakami, C., Mizutani, Y., Ryu, A., Naru,
E., Teramura, T., Homma, Y. and Fukuda, M. (2020) A novel
method for visualizing melanosome and melanin distribution in human skin tissues.
Int. J. Mol. Sci. 21, E8514 [PubMed]
i2019”Nj
19-1) Morishita, S., Wada, N., Fukuda,
M. and Nakamura, T. (2019) Rab5 activation on macropinosomes
requires ALS2, and subsequent Rab5 inactivation through ALS2 detachment
requires active Rab7. FEBS Lett. 593, 230-241 [PubMed]
19-2) Etoh, K. and Fukuda, M. (2019) Rab10 regulates
tubular endosome formation through KIF13A and KIF13B motors. J. Cell Sci.
132, jcs226977 [PubMed]
19-3) Takahashi, T., Minami, S.,
Tsuchiya, Y., Tajima, K., Sakai, N., Suga, K., Hisanaga,
S.-I., Ohbayashi, N., Fukuda, M. and Kawahara, H.
(2019) Cytoplasmic control of Rab family small GTPases through BAG6. EMBO Rep.
20, e46794 [PubMed]
19-4) Ohishi, Y., Kinoshita, R., Marubashi,
S., Ishida, M. and Fukuda, M. (2019) The BLOC-3 subunit HPS4 is required for
activation of Rab32/38 GTPases in melanogenesis, but its Rab9 activity is
dispensable for melanogenesis. J. Biol. Chem. 294, 6912-6922 [PubMed]
19-5) Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P. S., Marubashi, S., Oguchi, M. E., Ishida, M., Fujita, N. and Fukuda, M. (2019) Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J. Cell Biol. 218, 2035-2050 [PubMed]
19-6) Inoue, J., Ninomiya, M.,
Umetsu, T., Nakamura, T., Kogure, T., Kakazu, E., Iwata, T., Takai, S., Sano,
A., Fukuda, M., Watashi, K., Isogawa, M., Tanaka, Y.,
Shimosegawa, T., McNiven, M. A. and Masamune, A.
(2019) Small interfering RNA screening for the small GTPase Rab proteins
identifies that Rab5B as a major regulator of hepatitis B virus production. J. Virol. 93, e00621-19 [PubMed]
19-7) Furusawa, K., Takasugi, T.,
Chiu, Y.-W., Hori, Y., Tomita, T., Fukuda, M. and Hisanaga,
S.-I. (2019) CD2-associated protein (CD2AP) overexpression accelerates amyloid
precursor protein (APP) transfer from early endosomes to the lysosomal
degradation pathway. J. Biol. Chem. 294, 10886-10899 [PubMed]
19-8) Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K.,
Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A.,
Kanzaki, M., Wakabayashi, K., Okano, H. and Aoki, M. (2019) Extracellular ƒ¿-synuclein enters
dopaminergic cells by modulating flotillin-1-assisted dopamine transporter
endocytosis. FASEB
J. 33, 10240-10256 [PubMed]
19-9) Wei, Z., Zhang, M., Li, C.,
Huang, W., Fan, Y., Guo, J., Khater, M., Fukuda, M., Dong, Z. Hu, G. and Wu, G.
(2019) Specific TBC domain-containing proteins control the ER-Golgi-plasma
membrane trafficking of GPCRs. Cell Rep. 28, 554-566 [PubMed]
19-10) Arango Duque, G., Jardim, A.,
Gagnon, É., Fukuda, M. and Descoteaux, A. (2019) The
host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous
vacuole. PLoS Pathog. 15, e1007982 [PubMed]
19-11) Nishino, H., Saito, T., Wei, R.,
Takano, T., Tsutsumi, K., Taniguchi, M., Ando, K., Tomomura,
M., Fukuda, M. and Hisanaga, S.-I. (2019) The LMTK1–TBC1D9B–Rab11A cascade
regulates dendritic spine formation via endosome trafficking. J. Neurosci. 39, 9491-9502 [PubMed]
i2018”Nj
18-1) Oguchi, M. E., Etoh, K. and Fukuda, M. (2018) Rab20, a novel Rab small GTPase that negatively
regulates neurite outgrowth of PC12 cells. Neurosci. Lett.
662, 324-330 [PubMed]
18-2) Yoshida, S., Hasegawa, T., Suzuki, M., Sugeno,
N., Kobayashi, J., Ueyama, M., Fukuda, M., Ido-Fujibayashi, A., Sekiguchi, K.,
Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Mochizuki, H., Nagai, Y. and
Aoki, M. (2018) Parkinsonfs disease-linked DNAJC13 mutation aggravates
alpha-synuclein-induced neurotoxicity through perturbation of endosomal
trafficking. Hum.
Mol. Genet. 27, 823–836 [PubMed]
18-3) Kuchitsu, Y., Homma, Y., Fujita, N. and Fukuda, M. (2018) Rab7 knockout
unveils regulated autolysosome maturation induced by glutamine starvation. J. Cell Sci.
131, jcs215442 [PubMed]
18-4) Ogawa, M., Matsuda, R., Takada, N., Tomokiyo, M., Yamamoto, S., Shizukuishi, S., Yamaji, T., Yoshikawa, Y., Yoshida, M., Tanida, I., Koike, M., Murai, M., Morita, H., Takeyama, H., Ryo, A., Guan, J.-L., Yamamoto, M., Inoue, J. I., Yanagawa, T., Fukuda, M., Kawabe, H. and Ohnishi, M. (2018) Molecular mechanisms of Streptococcus pneumoniae-targeted autophagy via pneumolysin, Golgi-resident Rab41, and Nedd4-1 mediated K63-linked ubiquitination. @Cell. Microbiol. 20, e12846 [PubMed]
18-5) Kanemitsu-Fujita, A., Morishita, S., Kjaer, S., Fukuda, M., Schiavo, G. and Nakamura, T. (2018) Comparable affinity of RabGDIƒ¿ for GTP- and GDP-bound forms of Rab7 supports a four-state transition model for Rab7 subcellular localization. bioRxiv 287516 [link]
18-6) Eguchi, T., Kuwahara, T., Sakurai,
M., Komori, T., Fujimoto, T., Ito, G., Yoshimura, S.-I., Harada, A., Fukuda, M.,
Koike, M. and Iwatsubo, T. (2018) LRRK2 and its
substrate Rab GTPases are sequentially targeted onto stressed lysosomes and
maintain their homeostasis. Proc. Natl. Acad. Sci. U.S.A. 115, E9115-E9124 [PubMed]
18-7) Zhu, S., Bhat, S., Syan, S., Kuchitsu,
Y., Fukuda, M. and Zurzolo, C. (2018) Rab11a-Rab8a cascade regulate the formation of tunneling nanotubes
through vesicle recycling. J. Cell Sci. 131, jcs215889 [PubMed]
18-8) Hatta, T., Iemura,
S.I., Ohishi, T., Nakayama, H., Seimiya,
H., Yasuda, T., Iizuka, K., Fukuda, M., Takeda, J., Natsume, T. and Horikawa,
Y. (2018) Calpain-10 regulates actin dynamics by proteolysis of
microtubule-associated protein 1B. Sci. Rep. 8, 16756 [PubMed]
i2017”Nj
17-1) Furusawa, K., Asada, A., Urrutia, P., Gonzalez-Billault,
C., Fukuda, M. and Hisanaga, S. I. (2017) Cdk5 regulation of the GRAB-mediated Rab8-Rab11
cascade in axon outgrowth. J. Neurosci. 37, 790-806 [PubMed]
17-2) Fujita, N., Huang, W., Lin, T.-H., Groulx, J.-F., Jean, S., Nguyen, J.,
Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M. and Kiger, A. A.
(2017) Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule
remodeling and a Rab2 role in autophagy. eLife
6, e23367 [PubMed]
17-3) Ishida, M., Marubashi, S. and Fukuda, M.
(2017) M-INK, a novel tool for visualizing melanosomes and melanocores.
J. Biochem. 161,
323-326 [PubMed]
17-4) Aoki, Y., Manzano, R., Lee, Y., Dafinca, R.,
Aoki, M., Douglas, A. G. L., Varela, M. A., Sathyaprakash, C., Scaber, J., Barbagallo, P., Vader, P., Mäger,
I., Ezzat, K., Turner, M. R., Ito, N., Gasco, S., Ohbayashi,
N., El-Andaloussi, S., Takeda, S., Fukuda, M.,
Talbot, K. and Wood, M. J. A. (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in
amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140, 887-897 [PubMed]
17-5) Kabayama, H., Tokushige, N., Takeuchi, M.,
Kabayama, M., Fukuda, M. and Mikoshiba, K. (2017) Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination. Mol. Cell. Neurosci. 80,
89-99 [PubMed]
17-6) Oguchi, M. E., Noguchi, K. and Fukuda, M. (2017) TBC1D12 is a novel Rab11-binding protein that
modulates neurite outgrowth of PC12 cells. PLoS One 12, e0174883 [PubMed]
17-7) Takahama, M., Fukuda, M., Ohbayashi, N., Kozaki, T., Misawa, T., Okamoto, T., Matsuura, Y., Akira, S. and Saitoh, T. (2017) The RAB2B-GARIL5 complex promotes cytosolic DNA-induced innate immune responses. Cell Rep. 20, 2944-2954 [PubMed]
17-8) Klein, O., Roded, A., Zur, N., Azouz, N. P.,
Pasternak, O., Hirschberg, K., Hammel, I., Roche, P. A., Yatsu,
A., Fukuda, M., Galli, S. J. and Sagi-Eisenberg, R. (2017) Rab5 is critical for
SNAP23 regulated granule-granule fusion during compound exocytosis. Sci. Rep.
7, 15315 [PubMed]
17-9) Li, C., Wei, Z., Fan, Y., Huang, W., Su, Y., Li, H., Dong, Z., Fukuda,
M., Khater, M. and Wu, G. (2017) The GTPase Rab43 controls the anterograde ER-Golgi trafficking and
sorting of GPCRs. Cell Rep. 21, 1089-1101 [PubMed]
i2016”Nj
16-1) Hirano, S., Uemura, T., Annoh, H., Fujita,
N., Waguri, S., Itoh, T. and Fukuda, M. (2016) Differing susceptibility to autophagic
degradation activity of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1.
Autophagy 12, 312-326 [PubMed]
16-2) Marubashi, S., Shimada, H., Fukuda, M. and Ohbayashi, N. (2016) RUTBC1 functions as a
GTPase-activating protein for Rab32/38 and regulates melanogenic enzyme trafficking
in melanocytes. J.
Biol. Chem. 291,
1427-1440 [PubMed]
16-3) Yasuda, S., Morishita, S., Fujita, A., Nanao,
T., Wada, N., Waguri, S., Schiavo, G., Fukuda, M. and
Nakamura, T. (2016) Mon1-Ccz1 activates Rab7 only on late endosomes and
dissociates from the lysosome in mammalian cells. J. Cell Sci. 129, 329-340 [PubMed]
16-4) Efergan, A., Azouz, N. P., Klein, O., Noguchi, K., Rothenberg, M. E., Fukuda, M. and Sagi-Eisenberg, R. (2016) Rab12 regulates retrograde transport of mast cell secretory granules by interacting with the RILP-dynein complex. J. Immunol. 196, 1091-1101 [PubMed]
16-5) Hashimoto, A., Oikawa, T., Hashimoto, S., Sugino, H., Yoshikawa, A., Otsuka, Y., Handa, H., Onodera, Y., Nam, J.-M., Oneyama, C., Okada, M., Fukuda, M. and Sabe, H. (2016) P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance. J. Cell Biol. 213, 81-95 [PubMed]
16-6) Mrozowska, P. S. and Fukuda, M. (2016) Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D
epithelial cell cultures. J. Cell Biol. 213, 355-369 [PubMed]
16-7) Marubashi, S., Ohbayashi,
N. and Fukuda, M. (2016) A Varp-binding protein, RACK1, regulates dendrite
outgrowth through stabilization of Varp protein in mouse melanocytes. J. Invest.
Dermatol. 136, 1672-1680 [PubMed]
16-8) Wankel, B., Ouyang, J., Guo, X., Hadjiolova,
K., Miller, J., Liao, Y., Tham, D. K. L., Romih, R., Andrade, L. R., Gumper,
I., Simon, J.-P., Sachdeva, R., Tolmachova, T.,
Seabra, M. C., Fukuda, M., Schaeren-Wiemers, N.,
Hong, W. J., Sabatini, D. D., Wu, X.-R., Kong, X., Kreibich, G., Rindler, M. J.
and Sun T.-T. (2016) Sequential and compartmentalized action of Rabs, SNAREs,
and MAL in the apical delivery of fusiform vesicles in urothelial umbrella
cells. Mol.
Biol. Cell 27, 1621-1634 [PubMed]
16-9) Homma, Y. and Fukuda, M. (2016) Rabin8 regulates neurite outgrowth in both
GEF-activity-dependent and -independent manners. Mol. Biol. Cell 27, 2107-2118 [PubMed]
16-10) Mankouri, J., Walter, C., Stewart, H., Bentham, M. J.,
Park, W. S., Heo, W. D., Fukuda, M., Griffin, S. and Harris, M. (2016) Release of infectious hepatitis C virus from Huh7 cells occurs via a trans-Golgi network to endosome pathway
independent of very-low-density lipoprotein secretion. J. Virol. 90,
7159-7170 [PubMed]
16-11) Villarroel-Campos, D., Henriquez, D. R., Bodaleo, F. J., Oguchi, M. E., Bronfman, F. C., Fukuda, M.
and Gonzalez-Billault, C. (2016) Rab35 functions in axon elongation are regulated
by p53-related protein kinase (PRPK) in a mechanism that involves Rab35 protein
degradation and the microtubule-associated protein 1B. J. Neurosci.
36, 7298-7313 [PubMed]
16-12) Bello, O. D., Cappa A. I., de Paola M., Zanetti, M. N., Fukuda, M., Fissore, R. A., Mayorga, L. S. and Michaut, M. A. (2016) Rab3A, a possible marker of cortical granules,
participates in cortical granule exocytosis in mouse eggs. Exp. Cell Res.
347, 42-51 [PubMed]
16-13) Makino, A., Hullin-Matsuda, F., Murate, M.,
Abe, M., Tomishige, N., Fukuda, M., Yamashita, S.,
Fujimoto, T., Vidal, H., Lagarde, M., Delton-Vandenbroucke, I. and Kobayashi,
T. (2016) Acute accumulation of free cholesterol
induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and
lipid droplets in cultured human hepatocytes. Mol. Biol. Cell 27, 3293-3304 [PubMed]
i2015”Nj
15-1) Yatsu, A., Shimada, H., Ohbayashi,
N. and Fukuda, M. (2015)
Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of
Varp in melanocytes. Biol. Open 4, 267-275 [PubMed]
15-2) Ishida, M., Ohbayashi, N. and Fukuda, M. (2015) Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP. Sci. Rep. 5, 8238 [PubMed]
15-3) Etoh, K. and Fukuda, M. (2015) Structure-function analyses of the small
GTPase Rab35 and its efffector protein centaurin-ƒÀ2/ACAP2
during neurite outgrowth of PC12 cells. J. Biol. Chem. 290,
9064-9074 [PubMed]
15-4) Amagai, Y., Itoh, T., Fukuda, M. and Mizuno,
K. (2015) Rabin8 suppresses autophagosome formation
independently of its guanine nucleotide-exchange activity towards Rab8. J. Biochem. 158,
139-153 [PubMed]
15-5) Yasuda, T., Homma, Y. and Fukuda, M. (2015) Slp2-a inactivates ezrin by recruiting
protein phosphatase 1 to the plasma membrane. Biochem. Biophys. Res. Commun. 460, 896-902 [PubMed]
15-6) Imai, A., Tsujimura, M., Yoshie, S. and Fukuda, M. (2015) The small GTPase Rab33A participates in
regulation of amylase release from parotid acinar cells. Biochem. Biophys.
Res. Commun. 461, 469-474 [PubMed]
15-7) Shimada-Sugawara, M., Sakai, E., Okamoto, K., Fukuda, M., Izumi, T.,
Yoshida, N. and Tsukuba, T. (2015)
Rab27A regulates transport of cell surface receptors modulating multinucleation
and lysosome-related organelles in osteoclasts. Sci. Rep. 5,
9620 [PubMed]
15-8) Egami, Y., Fujii, M., Kawai, K., Ishikawa, Y., Fukuda, M. and Araki, N. (2015) Activation-inactivation cycling of Rab35
and ARF6 is required for phagocytosis of zymosan in RAW264 macrophages. J.
Immunol. Res. 2015:429439 [PubMed]
15-9) Aizawa, M. and Fukuda, M. (2015) Small GTPase Rab2B and its specific binding protein
Golgi-associated Rab2B interactor-like 4 (GARI-L4) regulate Golgi morphology. J.
Biol. Chem. 290,
22250-22261 [PubMed]
i2014”Nj
14-1) Ikawa, K., Satou,
A., Fukuhara, M., Matsumura, S. Sugiyama, N., Goto, H., Fukuda, M., Inagaki,
M., Ishihama, Y. and Toyoshima, F. (2014) Inhibition of endocytic vesicle fusion by
Plk1-mediated phosphorylation of vimentin during mitosis. Cell
Cycle 13,
126-137 [PubMed]
14-2) Yasuda, T.
and Fukuda, M. (2014) Slp2-a
controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27.
J.
Cell Sci. 127,
557-570 [PubMed]
14-3) Azouz, N. P., Zur, N., Efergan,
A., Ohbayashi, N., Fukuda, M., Amihai,
D., Hammel, I., Rothenberg, M. E. and Sagi-Eisenberg, R. (2014) Rab5 is a novel
regulator of mast cell secretory granules: impact on size, cargo and
exocytosis. J.
Immunol. 192, 4043-4053 [PubMed]
14-4) Ishida, M.,
Arai, S. P., Ohbayashi, N. and Fukuda, M. (2014) The GTPase-deficient Rab27A(Q78L)
mutant inhibits melanosome transport in melanocytes through trapping of Rab27A
effector protein Slac2-a/melanophilin in their cytosol:
Development of a novel melanosome-targeting tag. J. Biol. Chem. 289,
11059-11067 [PubMed]
14-5) Takano, T.,
Urushibara, T., Yoshioka, N., Saito, T., Fukuda, M., Tomomura, M. and Hisanaga, S.
(2014) LMTK1 regulates dendritic formation by
regulating movement of Rab11A-positive endosomes. Mol. Biol. Cell 25, 1755-1768@ [PubMed]
14-6) Matsui, T., Noguchi, K. and Fukuda, M. (2014) Dennd3 functions as a guanine nucleotide exchange factor
for small GTPase Rab12 in mouse embryonic fibroblasts. J. Biol. Chem. 289,
13986-13995 [PubMed]
14-7) Sugeno, N., Hasegawa, T., Tanaka, N., Fukuda, M., Wakabayashi, K., Oshima, R.,
Konno, M., Miura, E., Kikuchi, A., Baba, T., Anan, T., Nakao, M., Geisler, S.,
Aoki, M. and Takeda, A. (2014) Lys-63-linked
ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal
sequestration of internalized ƒ¿-synuclein. J. Biol.
Chem. 289, 18137-18151 [PubMed]
14-8) Kobayashi, H., Etoh, K.
and Fukuda, M. (2014) Rab35 is translocated from Arf6-positive perinuclear
recycling endosomes to neurite tips during neurite outgrowth. Small GTPases 5, e29290 [PubMed]
14-9) Mori, Y., Fukuda, M. and Henley, J. M. (2014)
Small GTPase Rab17 regulates the surface expression of kainate
receptors but not ƒ¿-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of
Syntaxin-4 protein. J. Biol. Chem. 289,
20773-20787 [PubMed]
14-10) Nishiyama, H., Koizumi, M., Ogawa, K., Kitamura, S., Konyuba, Y., Watanabe, Y. Ohbayashi, N., Fukuda, M., Suga, M. and Sato, C. (2014) Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications. Ultramicroscopy 147, 86-97 [PubMed]
14-11) Kobayashi,
H., Etoh, K., Ohbayashi, N.
and Fukuda, M. (2014) Rab35 promotes the recruitment of Rab8, Rab13 and Rab36
to recycling endosomes through MICAL-L1 during neurite outgrowth. Biol. Open 3, 803-814 [PubMed]
14-12) Arango
Duque, G., Fukuda, M., Turco, S. J., Stäger,
S. and Descoteaux, A. (2014) Leishmania
promastigotes induce cytokine secretion in macrophages through the degradation
of Synaptotagmin XI. J. Immunol. 193, 2363-2372 [PubMed]
14-13) Nishikimi, A., Ishihara, S.,
Ozawa, M., Etoh, K., Fukuda, M., Kinashi, T. and Katagiri, K. (2014) Rab13
acts downstream of the kinase Mst1 to deliver the integrin LFA-1 to the cell
surface for lymphocyte trafficking. Sci. Signal. 7, ra72 [PubMed]
14-14) McGough, I.
J., Steinberg, F., Gallon, M., Yatsu, A., Ohbayashi, N., Heesom, K., Fukuda, M. and Cullen, P. J.
(2014) Identification of molecular heterogeneity in SNX27-retromer-mediated
endosome-to-plasma membrane recycling. J. Cell Sci. 127, 4940-4953 [PubMed]
14-15) Gallo, L. I., Liao, Y., Ruiz, W. G., Clayton,
D. R., Li, M., Liu, Y.-J., Jiang, Y., Fukuda, M., Apodaca, G. and Yin, X.-M.
(2014) TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized
MDCK cells. Mol. Biol. Cell 25, 3779-3797 [PubMed]
i2013”Nj
13-1) Onoue, K., Jofuku,
A., Ban-Ishihara, R., Ishihara, T., Maeda, M., Koshiba, T., Itoh, T., Fukuda,
M., Otera, H., Oka, T., Takano, H., Mizushima, N.,
Mihara, K. and Ishihara, N. (2013) Fis1 acts as a mitochondrial recruitment
factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J. Cell Sci. 126, 176-185 [PubMed]
13-2) Nagai, H., Yasuda, S., Ohba,
Y., Fukuda, M. and Nakamura, T. (2013) All members of the EPI64 subfamily of
TBC/RabGAPs also have GAP activities toward Ras. J. Biochem. 153, 283-288 [PubMed]
13-3) Arango Duque, G., Fukuda, M. and Descoteaux,
A. (2013) Synaptotagmin XI regulates phagocytosis and
cytokine secretion in macrophages. J. Immunol.
190, 1737-1745 [PubMed]
13-4) Mori, Y., Matsui, T. and Fukuda, M. (2013)
Rabex-5 protein regulates dendritic localization of small GTPase Rab17 and
neurite morphogenesis in hippocampal neurons. J. Biol. Chem.
288, 9835-9847 [PubMed]
13-5) Matsui, T. and Fukuda, M. (2013) Rab12
regulates mTORC1 activity and autophagy through controlling the degradation of
amino-acid transporter PAT4. EMBO Rep. 14,
450-457 [PubMed]
13-6) Chiba, S., Amagai, Y., Homma, Y., Fukuda, M.
and Mizuno, K. (2013) NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from
phosphatidylserine to Sec15. EMBO J.
32, 874-885 [PubMed]
13-7) Yatsu, A., Ohbayashi, N., Tamura, K. and Fukuda, M. (2013) Syntaxin-3
is required for melanosomal localization of Tyrp1 in melanocytes. J. Invest. Dermatol. 133, 2237-2246 [PubMed]
13-8) Kobayashi,
H. and Fukuda, M. (2103) Rab35 establishes the EHD1-association site by
coordinating two distinct effectors during neurite outgrowth. J. Cell Sci.
126, 2424-2435 [PubMed]
13-9) Fuchigami, T.,
Sato, Y., Tomita, Y., Takano, T., Miyauchi, S., Tsuchiya, Y., Saito, T., Kubo,
K., Nakajima, K., Fukuda, M., Hattori, M. and Hisanaga,
S. (2013) Dab1-mediated colocalization of multi-adaptor protein CIN85 with
Reelin-receptors, ApoER2 and VLDLR, in neurons. Genes Cells 18, 410-424 [PubMed]
13-10) Mori, Y.,
Matsui, T., Omote, D. and Fukuda, M. (2013) Small
GTPase Rab39A interacts with UACA and regulates the retinoic acid-induced
neurite morphology of Neuro2A cells. Biochem. Biophys. Res.
Commun. 435, 113-119 [PubMed]
13-11) Bar-Gill,
A. B., Efergan, A., Seger, R., Fukuda, M. and
Sagi-Eisenberg, R. (2013) The extra-cellular signal regulated kinases ERK1 and ERK2
segregate displaying distinct spatiotemporal characteristics in activated mast
cells. Biochim.
Biophys. Acta - Mol. Cell Res. 1833,
2070-2082 [PubMed]
13-12) Imai, A., Ishida, M., Fukuda, M., Nashida, T. and Shimomura, H. (2013)
MADD/DENN/Rab3GEP functions as a guanine nucleotide exchange factor for Rab27
during granule exocytosis of rat parotid acinar cells. Arch.
Biochem. Biophys. 536,
31-37 [PubMed]
13-13) Kobayashi, H. and Fukuda, M. (2013) Arf6, Rab11 and transferrin receptor
define distinct populations of recycling endosomes. Commun. Integr. Biol. 6, e25036 [PubMed]
13-14) Ljubicic, S.,
Bezzi, P., Brajkovic, S., Nesca,
V., Guay, C., Ohbayashi, N., Fukuda, M., Abderrahmani, A. and Regazzi, R. (2013) The GTPase Rab37 participates in the
control of insulin exocytosis. PLoS
One 8, e68255 [PubMed]
13-15) Fujita, N., Morita, E., Itoh, T., Tanaka,
A., Nakaoka, M., Osada, Y., Umemoto, T., Saitoh, T., Nakatogawa, H., Kobayashi, S., Haraguchi, T., Guan, J. L.,
Iwai, K., Tokunaga, F., Saito, K., Ishibashi, K., Akira, S., Fukuda, M., Noda,
T. and Yoshimori, T. (2013)
Recruitment of the autophagic machinery to endosomes during infection is
mediated by ubiquitin. J. Cell Biol. 203,
115-128 [PubMed]
i2012”Nj
12-1) Brozzi, F., Diraison,
F., Lajus, S., Rajatileka, S., Philips, T., Regazzi,
R., Fukuda, M., Verkade, P., Molnár, E. and Varadi, A.
(2012) Molecular mechanism of myosin Va recruitment to dense core secretory
granules. Traffic
13, 54-69 [PubMed]
12-2) Ohbayashi, N.,
Maruta, Y., Ishida, M. and Fukuda, M. (2012) Melanoregulin regulates retrograde
melanosome transport through interaction with the RILP–p150Glued
complex in melanocytes. J. Cell Sci. 125, 1508-1518 [PubMed]
12-3) Ohbayashi, N., Yatsu, A., Tamura, K. and Fukuda, M. (2012) The Rab21-GEF
activity of Varp, but not its Rab32/38 effector function, is required for
dendrite formation in melanocytes. Mol. Biol. Cell 23, 669-678 [PubMed]
12-4) Chesneau, L., Dambournet, D., Machicoane, M., Kouranti, I., Fukuda, M., Goud, B. and Echard, A. (2012) An
ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol.
22, 147-153 [PubMed]
12-5) Kobayashi, H. and Fukuda, M. (2012) Rab35
regulates Arf6 activity through centaurin-beta2 (ACAP2) during neurite
outgrowth. J.
Cell Sci. 125, 2235-2243 [PubMed]
12-6) Mori, Y., Matsui, T., Furutani, Y.,
Yoshihara, Y. and Fukuda, M. (2012) Small GTPase Rab17
regulates the dendritic morphogenesis and postsynaptic development of
hippocampal neurons. J. Biol. Chem. 287, 8963-8973 [PubMed]
12-7) Gao, J., Takeuchi, H., Zhang, Z., Fukuda, M.
and Hirata, M. (2012) Phospholipase
C-related but catalytically inactive protein (PRIP) modulates synaptosomal-associated protein 25 (SNAP-25)
phosphorylation and exocytosis. J. Biol. Chem. 287, 10565-10578 [PubMed]
12-8) Takano, T., Tomomura,
M., Yoshioka, N., Tsutsumi, K., Terasawa, Y., Saito, T., Kawano, H., Kamiguchi, H., Fukuda, M. and Hisanaga,
S. (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via
Rab11 in a Cdk5-dependent manner. J. Neurosci. 32, 6587-6599 [PubMed]
12-9) Ishida,
M., Ohbayashi, N., Maruta, Y., Ebata, Y. and Fukuda,
M. (2012) Functional involvement of Rab1A in
microtubule-dependent anterograde melanosome transport in melanocytes. J. Cell Sci.
125, 5177-5187 [PubMed]
12-10) Ishibashi,
K., Uemura, T., Waguri, S. and Fukuda, M. (2012) Atg16L1, an essential factor for canonical
autophagy, participates in hormone secretion from PC12 cells independently of
autophagic activity. Mol. Biol. Cell 23, 3193-3202 [PubMed]
12-11) Yasuda, T.,
Saegusa, C., Kamakura, S., Sumimoto,
H. and Fukuda, M. (2012) Rab27
effector Slp2-a transports the apical signaling molecule podocalyxin
to the apical surface of MDCK II cells and regulates claudin-2 expression. Mol. Biol. Cell 23, 3229-3239 [PubMed]
12-12) Matsui, T.,
Ohbayashi, N. and Fukuda, M. (2012) The Rab interacting lysosomal protein (RILP)
homology domain functions as a novel effector domain for small GTPase Rab36:
Rab36 regulates retrograde melanosome transport in melanocytes. J. Biol. Chem. 287, 28619-28631 [PubMed]
12-13) Azouz, N.
P., Matsui, T., Fukuda, M. and Sagi-Eisenberg, R. (2012) Decoding the regulation of mast cell exocytosis by
networks of Rab GTPases. J.
Immunol. 189, 2169-2180 [PubMed]
12-14) Zografou, S., Basagiannis, D., Papafotika, A.,
Shirakawa, R., Horiuchi, H., Auerbach, D., Fukuda, M. and Christoforidis, S. (2012) A complete Rab screening reveals novel insights in
Weibel–Palade body exocytosis. J. Cell Sci. 125, 4780-4790 [PubMed]
12-15) Gálvez-Santisteban, M., Rodriguez-Fraticelli, A. E.,
Bryant, D. M., Vergarajauregui, S., Yasuda, T., Bañón-Rodríguez, I., Bernascone,
I., Datta, A., Spivak, N., Young, K., Slim, C. L., Brakeman, P. R., Fukuda, M.,
Mostov, K. E. and Martín-Belmonte, F. (2012) Synaptotagmin-like
proteins control the formation of a single apical membrane domain in epithelial
cells. Nature
Cell Biol. 14, 838-849 [PubMed]
12-16) Yoshida-Amano,
Y., Hachiya, A., Ohuchi, A., Kobinger, G. P.,
Kitahara, T., Takema, Y. and Fukuda, M. (2012) Essential role of RAB27A in determining
constitutive human skin color. PLoS
One 7, e41160 [PubMed]
12-17) Nagahama,
M., Umezaki, M., Tashiro, R., Oda, M., Kobayashi, K.,
Shibutani, M., Takagishi, T., Ishidoh,
K., Fukuda, M. and Sakurai, J. (2012) Intracellular trafficking of Clostridium perfringens iota-toxin b. Infect.
Immun. 80, 3410-3416 [PubMed]
12-18) Nakazawa,
H., Sada, T., Toriyama, M., Tago, K., Sugiura, T., Fukuda, M. and Inagaki, N. (2012) Rab33a mediates anterograde vesicular transport
for membrane exocytosis and axon outgrowth. J. Neurosci. 32, 12712-12725 [PubMed]
i2011”Nj
11-1) Tamura,
K., Ohbayashi, N., Ishibashi, K. and Fukuda, M.
(2011) Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the
trafficking of tyrosinase-related protein 1 in melanocytes. J. Biol. Chem.
286, 7507-7521 [PubMed]
11-2) Itoh, T., Kanno, E., Uemura, T., Waguri, S.
and Fukuda, M. (2011) OATL1, a novel autophagosome-resident Rab33B-GAP,
regulates autophagosomal maturation. J. Cell Biol.
192, 839-853 [PubMed]
11-3) Matsuoka, H., Harada, K., Nakamura, J., Fukuda, M. and
Inoue, M. (2011) Differential distribution of synaptotagmin-1, -4, -7, and -9
in rat adrenal chromaffin cells. Cell Tissue Res. 344,
41-50 [PubMed]
11-4) Beaumont, K. A., Hamilton, N. A., Moores, M.
T., Brown, D. L., Ohbayashi, N., Cairncross, O.,
Cook, A. L., Smith, A. G., Misaki, R., Fukuda, M., Taguchi, T., Sturm, R. A.
and Stow, J. L. (2011) The recycling endosome protein Rab17 regulates
melanocytic filopodia formation and melanosome trafficking. Traffic
12, 627-643 [PubMed]
11-5) Sasakawa, N., Ohara-Imaizumi, M., Fukuda, M., Kabayama, H., Mikoshiba, K. and Kumakura, K. (2011) Dissociation of
inositol polyphosphates from the C2B domain of synaptotagmin
facilitates spontaneous release of catecholamines in adrenal chromaffin cells:
A suggestive evidence of a fusion clamp by synaptotagmin.
Neuropharmacology
60, 1364-1370 [PubMed]
11-6) Egami, Y., Fukuda, M. and
Araki, N. (2011) Rab35 regulates phagosome formation through recruitment of
ACAP2 in macrophages during FcgammaR-mediated
phagocytosis. J. Cell Sci. 124, 3557-3567 [PubMed]
11-7) Vinet, A. F., Jananji, S., Turco, S. J., Fukuda, M. and Descoteaux, A.
(2011) Exclusion of synaptotagmin V at the phagocytic
cup by Leishmania donovani
lipophosphoglycan results in decreased promastigote
internalization. Microbiology 157, 2619-2628 [PubMed]
11-8) Matsui, T., Itoh, T. and
Fukuda, M. (2011) Small GTPase Rab12 regulates constitutive degradation of
transferrin receptor. Traffic 12, 1432-1443 [PubMed]
11-9) Fukuda, M., Kobayashi, H., Ishibashi, K. and Ohbayashi, N. (2011) Genome-wide investigation of the Rab
binding activity of RUN domains: Development of a novel tool that specifically
traps GTP-Rab35. Cell Struct. Funct. 36,
155-170 [PubMed]
11-10) Zhang, L., Yu, K., Robert, K. W., DeBolt, K.
M., Hong, N., Tao, J.-Q., Fukuda, M., Fisher, A. B. and Huang, S. (2011) Rab38
targets to lamellar bodies and normalizes their sizes in lung alveolar type II
epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L461-L477 [PubMed]
11-11) Imai, A., Yoshie, S., Ishibashi, K., Haga-Tsujimura,
M., Nashida, T., Shimomura, H. and Fukuda, M. (2011) EPI64 protein functions as
a physiological GTPase-activating protein for Rab27 protein and regulates
amylase release in rat parotid acinar cells. J. Biol. Chem. 286, 33854-33862 [PubMed]
11-12) Doi, H., Yoshida, K., Yasuda, T., Fukuda, M.,
Fukuda, Y., Morita, H., Ikeda, S.-I., Kato, R., Tsurusaki,
Y., Miyake, N., Saitsu, H., Sakai, H., Miyatake, S.,
Shiina, M., Nukina, N., Koyano,
S., Tsuji, S., Kuroiwa, Y. and Matsumoto, N. (2011) Exome sequencing reveals a
homozygous SYT14 mutation in
adult-onset autosomal recessive spinocerebellar ataxia with psychomotor
retardation. Am.
J. Hum. Genet. 89,
320-327 [PubMed]
11-13) Ishibashi, K.,
Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T. and Fukuda, M. (2011)
Atg16L2, a novel isoform of mammalian Atg16L that is not essential for
canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy 7,
1500-1513 [PubMed]
i2010”Nj
10-1) Tsuboi, T., Kitaguchi,
T., Karasawa, S., Fukuda, M. and Miyawaki, A. (2010) Age-dependent preferential
dense-core vesicle exocytosis in neuroendocrine cells revealed by newly
developed monomeric fluorescent timer protein. Mol. Biol. Cell 21, 87-94 [PubMed]
10-2) Ostrowski,
M., Carmo, N. B., Krumeich, S., Fanget,
I., Raposo, G., Savina, A., Moita, C. F., Schauer, K., Hume, A. N., Freitas, R.
P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M.,
Desnos, C., Seabra, M. C., Darchen, F., Amigorena,
S., Moita, L. F. and Thery, C. (2010) Rab27a and Rab27b control different steps
of the exosome secretion pathway. Nature Cell Biol. 12, 19-30 [PubMed]
10-3) Lico, D. T. P., Rosa, J. C., DeGiorgis, J. A., deVasconcelos, E. J. R., Casaletti,
L., Tauhata, S. B. F., Baqui, M. M. A., Fukuda, M.,
Moreira, J. E. and Larson, R. E. (2010) A novel 65 kDa RNA-binding protein
in squid presynaptic terminals. Neuroscience 166,
73-83 [PubMed]
10-4) Ko, H. W., Norman, R. X., Tran, J., Fuller,
K. P., Fukuda, M. and Eggenschwiler, J. T. (2010) Broad-minded links cell
cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev. Cell
18, 237-247 [PubMed]
10-5) Kanno, E., Ishibashi, K., Kobayashi, H.,
Matsui, T., Ohbayashi, N. and Fukuda, M. (2010)
Comprehensive screening for novel Rab-binding proteins by GST pull-down assay using 60 different mammalian Rabs. Traffic
11, 491-507
[PubMed]
10-6) Schlager,
M. A., Kapitein, L. C., Grigoriev, I., Burzynski, G.
M., Wulf, P. S., Keijzer, N., de Graaff, E., Fukuda, M., Shepherd, I. T., Akhmanova, A. and Hoogenraad, C.
C. (2010) Pericentrosomal targeting of Rab6 secretory vesicles by
Bicaudal-D-related protein-1 (BICDR-1) regulates neuritogenesis.
EMBO J.
29, 1637-1651 [PubMed]
10-7) Sato, M.,
Mori, Y., Matsui, T., Aoki, R., Oya, M., Yanagihara, Y., Fukuda, M. and Tsuboi,
T. (2010) Role of the polybasic sequence in the Doc2alpha C2B domain in
dense-core vesicle exocytosis in PC12 cells. J. Neurochem.
114, 171-181 [PubMed]
10-8) Ohbayashi, N., Mamishi,
S., Ishibashi, K., Maruta, Y., Pourakbari, B., Tamizifar, B., Mohammadpour, M., Fukuda, M. and Parvaneh,
N. (2010) Functional characterization of
two Rab27A
missense mutations found in Griscelli syndrome type 2. Pigment Cell
Melanoma Res. 23, 365-374 [PubMed]
10-9) Tsutsumi, K., Takano, T., Endo, R., Fukuda,
M., Ohshima, T., Tomomura, M. and Hisanaga,
S. (2010) Phosphorylation of AATYK1 by Cdk5 suppresses its tyrosine
phosphorylation. PLoS One 5,
e10260 [PubMed]
10-10) Harada, K., Matsuoka, H., Nakamura,
J., Fukuda, M. and Inoue, M. (2010) Storage of GABA in chromaffin granules and
not in synaptic-like microvesicles in rat adrenal medullary cells. J. Neurochem. 114, 617-626 [PubMed]
10-11) Takano, T., Tsutsumi, K., Saito, T., Asada, A., Tomomura, M., Fukuda, M. and Hisanaga,
S. (2010) AATYK1A phosphorylation by Cdk5 regulates the recycling endosome
pathway. Genes Cells 15, 783-797 [PubMed]
i2009”Nj
09-1) Ishibashi,
K., Kanno, E., Itoh, T. and Fukuda, M. (2009) Identification and characterization of a novel
Tre-2/Bub2/Cdc16 (TBC) protein that possesses Rab3A-GAP activity. Genes
Cells 14, 41-52 [PubMed]
09-2) Imai, A., Fukuda, M., Yoshie, S., Nashida,
T. and Shimomura, H. (2009) Redistribution of Rab27-specific effector Slac2-c,
but not Slp4-a, after isoproterenol-stimulation in rat parotid acinar cells. Arch. Oral Biol.
54, 361-368 [PubMed]
09-3) Imai, A., Yoshie, S., Nashida, T., Fukuda, M.
and Shimomura, H. (2009) Redistribution of small
GTP-binding protein, Rab27B, in rat parotid acinar cells after stimulation with
isoproterenol. Eur.
J. Oral Sci. 117, 224-230
[PubMed]
09-4) Tambe, Y., Yamamoto, A., Isono, T., Chano,
T., Fukuda, M. and Inoue, H. (2009) The drs tumor suppressor is involved in the
maturation process of autophagy induced by low serum. Cancer
Lett. 283, 74-83 [PubMed]
09-5) Tamura, K., Ohbayashi,
N., Maruta, Y., Kanno, E., Itoh, T. and Fukuda, M. (2009) Varp is a novel
Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol. Biol. Cell
20, 2900-2908 [PubMed]
09-6) Arimura, N., Kimura, T., Nakamuta,
S., Taya, S., Funahashi, Y., Hattori, A., Shimada,
A., Ménager, C., Kawabata, S., Fujii, K., Iwamatsu,
A., Segal, R. A., Fukuda, M. and Kaibuchi, K. (2009) Anterograde transport of TrkB
in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell
16, 675-686 [PubMed]
09-7) Maekawa, F., Tsuboi, T., Fukuda, M. and
Pellerin, L. (2009) Regulation of the intracellular distribution, cell surface
expression, and protein levels of AMPA receptor GluR2 subunits by the
monocarboxylate transporter MCT2 in neuronal cells. J. Neurochem.
109, 1767-1778 [PubMed]
09-8) Terabayashi, T., Funato, Y., Fukuda, M. and Miki, H. (2009) A coated
vesicle-associated kinase of 104 kDa (CVAK104)
induces lysosomal degradation of frizzled 5 (Fzd5). J. Biol. Chem. 284, 26716-26724 [PubMed]
09-9) Vinet, A.
F., Fukuda, M., Turco, S. J. and Descoteaux, A. (2009) The Leishmania donovani lipophosphoglycan
excludes the vesicular proton-ATPase from phagosomes by impairing the
recruitment of Synaptotagmin V. PLoS Pathog. 5,
e1000628 [PubMed]
09-10) Miyakawa, K., Ryo, A., Murakami, T., Ohba, K., Yamaoka, S., Fukuda, M., Guatelli,
J. and Yamamoto, N. (2009) BCA2/Rabring7 promotes tetherin-dependent
HIV-1 restriction. PLoS Pathog. 5, e1000700 [PubMed]
i2008”Nj
08-1) Gauthier, B. R., Duhamel, D. L., Iezzi, M.,
Theander, S., Saltel, F., Fukuda, M., Wehrle-Haller,
B. and Wollheim, C. B. (2008) Synaptotagmin VII splice variants alpha, beta, and delta
are expressed in pancreatic beta-cells and regulate insulin exocytosis. FASEB J.
22, 194-206 [PubMed]
08-2) Mori, Y., Higuchi, M., Hirabayashi, Y., Fukuda, M. and Gotoh, Y. (2008) JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J.
27, 76-87 [PubMed]
08-3) Kanno, E. and Fukuda, M. (2008) Increased plasma membrane
localization of O-glycosylation-deficient mutant of synaptotagmin
I in PC12 cells. J. Neurosci. Res. 86,
1036-1043 [PubMed]
08-4) Sano, H.,
Roach, W. G., Peck, G. R., Fukuda, M. and Lienhard, G. E. (2008) Rab10 in
insulin-stimulated GLUT4 translocation. Biochem. J. 411, 89-95 [PubMed]
08-5) Holt, O.,
Kanno, E., Bossi, G., Booth, S., Daniele, T., Santoro, A., Arico, M., Saegusa, C., Fukuda, M. and Griffiths, G. M. (2008) Slp1
and Slp2-a localize to the plasma membrane of CTL and contribute to secretion
from the immunological synapse. Traffic 9,
446-457 [PubMed]
08-6) Frittoli, E., Palamidessi,
A., Pizzigoni, A., Lanzetti, L., Garrè,
M., Troglio, F., Troilo, A., Fukuda, M., Di Fiore, P.
P., Scita,
G. and Confalonieri, S. (2008) The primate-specific protein TBC1D3 is required
for optimal macropinocytosis in a novel ARF6
dependent pathway. Mol. Biol. Cell 19,
1304-1316 [PubMed]
08-7) Fujibayashi,
A., Taguchi, T., Misaki, R., Ohtani, M., Dohmae, N., Takio, K., Yamada, M., Gu, J., Yamakami,
M., Fukuda, M., Waguri, S., Uchiyama, Y., Yoshimori,
T. and Sekiguchi, K. (2008) Human
RME-8 is involved in membrane trafficking through early endosomes. Cell Struct. Funct. 33,
35-50 [PubMed]
08-8) Fukuda, M., Kanno, E., Ishibashi, K. and Itoh, T. (2008) Large scale screening for novel Rab
effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7,
1031-1042 [PubMed]
08-9) Martin, D.,
Allagnat, F., Chaffard, G.,
Caille, D., Fukuda, M., Regazzi, R., Abderrahmani, A.,
Waeber, G., Meda, P., Maechler,
P. and Haefliger, J.-A. (2008) Functional
significance of repressor element 1 silencing transcription factor (REST)
target genes in pancreatic beta cells. Diabetologia 51, 1429-1439 [PubMed]
08-10) Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda,
T. and Yoshimori, T. (2008) The Atg16L complex specifies the site of LC3 lipidation
for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092-2100 [PubMed]
08-11) Itoh, T., Fujita, N., Kanno, E., Yamamoto, A.,
Yoshimori, T. and Fukuda, M. (2008) Golgi-resident small GTPase Rab33B
interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell
19, 2916-2925 [PubMed]
08-12) Saegusa, C., Kanno, E., Itohara, S. and Fukuda, M. (2008) Expression of
Rab27B-binding protein Slp1 in pancreatic acinar cells and its involvement in
amylase secretion. Arch. Biochem.
Biophys. 475, 87-92 [PubMed]
08-13) Patino-Lopez,
G., Dong, X., Ben-Aissa, K., Bernot, K. M., Itoh, T., Fukuda, M., Kruhlak, M.
J., Samelson, L. E. and Shaw, S. (2008) Rab35 and its GAP EPI64C in T cells
regulate receptor recycling and immunological synapse formation. J. Biol. Chem.
283, 18323-18330 [PubMed]
08-14) Kukimoto-Niino, M., Sakamoto, A., Kanno, E., Hanawa-Suetsugu,
K., Terada, T., Shirouzu, M., Fukuda, M. and Yokoyama, S. (2008) Structural basis
for the exclusive specificity of Slac2-a/melanophilin
for the Rab27 GTPases. Structure 16,
1478-1490 [PubMed]
08-15) Herrero-Turrión,
M. J., Calafat, J., Janssen, H., Fukuda, M. and Mollinedo, F. (2008) Rab27a
regulates exocytosis of tertiary and specific granules in human neutrophils. J. Immunol.
181, 3793-3803 [PubMed]
08-16) Kesari, A., Fukuda, M., Knoblach, S., Bashir,
R., Nader, G. A., Rao, D., Nagaraju, K. and Hoffman, E. P. (2008) Dysferlin-deficiency shows compensatory induction of
Rab27A/Slp2a that may contribute to inflammatory onset. Am. J.
Pathol. 173, 1476-1487 [PubMed]
08-17) Vinet, A. F., Fukuda, M. and Descoteaux, A. (2008)
The exocytosis regulator synaptotagmin V controls phagocytosis in macrophages. J. Immunol. 181, 5289-5295 [PubMed]
08-18) Yu, E.,
Kanno, E., Choi, S., Sugimori, M., Moreira, J. E., Llinás,
R. R. and Fukuda, M. (2008) Role of Rab27 in synaptic transmission at the squid
giant synapse. Proc.
Natl. Acad. Sci. USA 105,
16003-16008 [PubMed]
i2007”Nj
07-1) Tsuboi, T.,
Kanno, E. and Fukuda, M. (2007) The
polybasic sequence in the C2B domain of rabphilin is
required for the vesicle docking step in PC12 cells. J. Neurochem. 100, 770-779 [PubMed]
07-2) Kishida, S.,
Hamao, K., Inoue, M., Hasegawa, M., Matsuura, Y., Mikoshiba,
K., Fukuda, M. and Kikuchi, A. (2007) Dvl regulates
endo- and exocytotic processes through binding to synaptotagmin.
Genes Cells
12, 49-61 [PubMed]
07-3) Iwashita, S., Kobayashi, K., Kubo, Y., Hinohara, Y., Sezaki, M.,
Nakamura, K., Suzuki-Migishima, R., Yokoyama, M.,
Satoh, S., Fukuda, M., Ohba, M., Kato, C., Adachi, E.
and Song, S.-Y. (2007) Versatile roles of R-Ras GAP in neurite formation of
PC12 cells and embryonic vascular development. J. Biol. Chem. 282, 3413-3417 [PubMed]
07-4) Tsuboi, T.
and Fukuda, M. (2007) Synaptotagmin VII modulates the kinetics of dense-core vesicle
exocytosis in PC12 cells. Genes
Cells 12, 511-519 [PubMed]
07-5) Hashii, M., Fukuda M., Nomura, H., Ito, N., Takahashi, H., Hattori, S., Mikoshiba, K., Noda, M. and Higuchi, Y. (2007) Up-regulation of ras-GAP genes is reversed by a MEK
inhibitor and doxorubicin in v-Ki-ras transformed
NIH/3T3 fibroblasts. Biochem. Biophys. Res. Commun. 356, 374-380 [PubMed]
07-6) Sano, H., Eguez, L., Teruel, M.
N., Fukuda, M., Chuang, T. D., Chavez, J. A., Lienhard, G. E. and McGraw, T. E.
(2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated
translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab.
5, 293-303 [PubMed]
07-7) Haberman, Y., Ziv, I., Gorzalczany, Y., Hirschberg, K., Mittleman, L., Fukuda, M.
and Sagi-Eisenberg, R. (2007) Synaptotagmin (Syt) IX is an essential determinant for protein sorting to
secretory granules in mast cells. Blood 109, 3385-3392 [PubMed]
07-8) Musch,
M. W., Arvans, D. L., Walsh-Reitz, M. M., Uchiyama, K.,
Fukuda, M. and Chang, E. B. (2007) Synaptotagmin I
binds intestinal epithelial NHE3 and mediates cyclic AMP- and Ca2+-induced
endocytosis by recruitment of AP2 and clathrin. Am. J. Physiol. Gastrointest.
Liver Physiol. 292,
G1549-1558 [PubMed]
07-9) Brunner, Y., Couté, Y., Iezzi, M., Foti,
M., Fukuda, M., Hochstrasser, D., Wollheim, C. B. and
Sanchez, J.-C. (2007) Proteomic analysis of insulin secretory granules. Mol. Cell.
Proteomics 6, 1007-1017 [PubMed]
07-10) Takahashi, M., Murate,
M., Fukuda, M., Sato, S. B., Ohta, A. and Kobayashi, T. (2007) Cholesterol
controls lipid endocytosis through rab11. Mol. Biol. Cell 18, 2667-2677 [PubMed]
07-11) Misaki, R., Nakagawa, T., Fukuda, M., Taniguchi, N. and Taguchi, T.
(2007) Spatial segregation of degradation- and recycling-trafficking pathways
in COS-1 cells. Biochem. Biophys. Res. Commun. 360, 580-585 [PubMed]
07-12) Swiatecka-Urban, A., Talebian,
L., Kanno, E., Moreau-Marquis, S., Coutermarsh, B., Hansen, K., Karlson, K. H.,
Barnaby, R., Cheney, R. E., Langford, G. M., Fukuda, M. and Stanton, B. A.
(2007) Myosin Vb is required for trafficking of
cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical
recycling endosomes in polarized human airway epithelial cells. J. Biol. Chem.
282, 23725-23736 [PubMed]
i2006”Nj
06-1) Herrero-Turrión,
M. J., Fukuda, M. and Mollinedo, F. (2006) Cloning and genomic characterization
of sytdep, a new synaptotagmin
XIV-related gene. Biochem. Biophys. Res.
Commun. 340, 386-394 [PubMed]
06-2) Fukuda, M. (2006)
Distinct developmental expression of synaptotagmin I
and IX in the mouse brain. NeuroReport 17,
179-182 [PubMed]
06-3) Fukuda, M. (2006)
Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin:
Hierarchy of Rab27A effectors. Biochem. Biophys. Res. Commun.
343, 666-674 [PubMed]
06-4) Saxena, S. K.,
Horiuchi, H. and Fukuda, M. (2006) Rab27a regulates epithelial sodium channel
(ENaC) activity through synaptotagmin-like protein
(SLP-5) and Munc13-4 effector mechanism. Biochem. Biophys. Res. Commun. 344, 651-657 [PubMed]
06-5) Tsuboi, T. and
Fukuda, M. (2006) The Slp4-a linker domain controls exocytosis through
interaction with Munc18-1·syntaxin-1a complex. Mol. Biol. Cell
17, 2101-2112 [PubMed]
06-6) Tsuboi, T. and
Fukuda, M. (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core
vesicle exocytosis in PC12 cells. J. Cell Sci. 119, 2196-2203 [PubMed]
06-7) Saegusa, C., Tanaka, T., Tani, S., Itohara, S., Mikoshiba, K. and
Fukuda, M. (2006) Decreased basal mucus secretion by Slp2-a-deficient gastric
surface mucous cells. Genes Cells 11,
623-631 [PubMed]
06-8) Mahoney, T. R.,
Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z.-W., Fukuda, M.
and Nonet, M. L. (2006) Regulation of synaptic transmission by RAB-3 and RAB-27
in Caenorhabditis elegans. Mol. Biol. Cell
17, 2617-2625 [PubMed]
06-9) Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Bell, C., Nos, L., Fried, P.,
Pearce, D. A., Singh, S., Siderovski, D. P., Willard,
F. S. and Fukuda, M. (2006) Chronic olanzapine treatment causes differential expression
of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacol. 31, 1888-1899 [PubMed]
06-10) Itoh, T.,
Satoh, M., Kanno, E. and Fukuda, M. (2006) Screening for target Rabs of TBC
(Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding
activity. Genes
Cells 11, 1023-1037 [PubMed]
06-11) Kapp-Barnea,
Y., Ninio-Many, L., Hirschberg, K., Fukuda, M., Jeromin,
A. and Sagi-Eisenberg, R. (2006) Neuronal calcium sensor-1 (NCS-1) and PI4Kbeta
stimulate ERK1/2 signaling by accelerating recycling through endocytic
recycling compartment (ERC). Mol. Biol. Cell 17, 4130-4141 [PubMed]
06-12) Kondo, H., Shirakawa,
R., Higashi, T., Kawato, M., Fukuda, M., Kita, T. and
Horiuchi, H. (2006) Constitutive GDP/GTP exchange and secretion-dependent GTP
hydrolysis activity for Rab27 in platelets. J. Biol. Chem. 281, 28657-28665 [PubMed]
06-13) Itoh, T. and
Fukuda, M. (2006) Identification of
EPI64 as a GTPase-activating protein specific for Rab27A. J. Biol. Chem. 281, 31823-31831 [PubMed]
06-14) Imai, A., Yoshie, S., Nashida, T., Shimomura, H.
and Fukuda, M. (2006) Functional involvement of Noc2, a Rab27 effector, in rat
parotid acinar cells. Arch. Biochem.
Biophys. 455, 127-135 [PubMed]
i2005”Nj
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
05-1) Atiya-Nasagi,
Y., Cohen, H., Medalia, O., Fukuda, M. and Sagi-Eisenberg, R. (2005) O-glycosylation is
essential for intracellular targeting of synaptotagmins
I and II in non-neuronal specialized secretory cells. J. Cell Sci. 118,
1363-1372 [PubMed]
05-2) Haberman, Y.,
Ziv, I., Gorzalczany, Y., Fukuda, M. and
Sagi-Eisenberg, R. (2005) Classical protein kinase C(s) regulates targeting of synaptotagmin IX to the endocytic recycling compartment. J. Cell Sci.
118, 1641-1649 [PubMed]
05-3) Kuroda, T. S.
and Fukuda, M. (2005) Functional analysis of Slac2-c/MyRIP
as a linker protein between melanosomes and myosin VIIa.
J. Biol. Chem.
280, 28015-28022 [PubMed]
05-4) Mîinea,
C. P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen,
J., Lane, W. S. and Lienhard, G. E. (2005) AS160, the Akt substrate regulating
GLUT4 translocation, has a functional Rab GTPase activating protein domain. Biochem. J. 391, 87-93 [PubMed]
05-5) Roggero, C. M.,
Tomes, C. N., De Blas, G. A., Castillo, J., Michaut, M. A., Fukuda, M. and
Mayorga, L. S. (2005) Protein Kinase C-mediated phosphorylation of the two
polybasic regions of synaptotagmin VI regulates their
function in acrosomal exocytosis. Dev. Biol. 285,
422-435 [PubMed]
05-6) Iezzi, M.,
Eliasson, L., Fukuda, M. and Wollheim, C. B. (2005)
Adenovirus-mediated silencing of Synaptotagmin 9
inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett.
579, 5241-5246 [PubMed]
05-7) Saxena, S.,
Singh, M., Engisch, K., Fukuda, M. and Kaur, S.
(2005) Rab proteins regulate epithelial sodium channel activity in colonic
epithelial HT-29 cells. Biochem. Biophys. Res.
Commun. 337, 1219-1223 [PubMed]
05-8)
Swiatecka-Urban, A., Brown, A., Moreau-Marquis, S., Renuka, J., Coutermarsh,
B., Barnaby, R., Karlson, K. H., Flotte, T. R., Fukuda, M., Langford, G. M. and
Stanton, B. A. (2005) The short apical membrane half-life of rescued
deltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) results
from accelerated endocytosis of deltaF508-CFTR in polarized human airway
epithelial cells. J. Biol. Chem. 280,
36762-36772 [PubMed]
05-9) Fukuda, M.,
Imai, A., Nashida, T. and Shimomura, H. (2005) Slp4-a/granuphilin-a interacts
with syntaxin-2/3 in a Munc18-2-dependent manner. J. Biol. Chem. 280, 39175-39184 [PubMed]
05-10) Tsuboi, T. and
Fukuda, M. (2005) The C2B domain of rabphilin
directly interacts with SNAP-25 and regulates the docking step of dense core
vesicle exocytosis in PC12 cells. J. Biol. Chem. 280, 39253-39259 [PubMed]
i2004”Nj
04-1) Sadakata, T.,
Mizoguchi, A., Sato, Y., Katoh-Semba, R., Fukuda, M., Mikoshiba,
K. and Furuichi, T. (2004) The secretory granule-associated protein CAPS2
regulates neurotrophin release and cell survival. J. Neurosci. 24,
43-52 [PubMed]
04-2) Fukuda, M. and
Kuroda, T. S. (2004) Missense mutations in the globular tail of myosin-Va in dilute mice partially impair binding of
Slac2-a/melanophilin. J. Cell Sci. 117, 583-591 [PubMed]
04-3) Shirakawa, R.,
Higashi, T., Tabuchi, A., Yoshioka, A., Nishioka, H., Fukuda, M., Kita, T. and
Horiuchi, H. (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense
core granule secretion in platelets. J. Biol. Chem. 279, 10730-10737 [PubMed]
04-4) Rickman, C., Archer,
D. A., Meunier, F. A., Craxton, M., Fukuda, M., Burgoyne, R. D. and Davletov, B. (2004) Synaptotagmin
interaction with the syntaxin/SNAP-25 dimer is
mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J. Biol. Chem. 279, 12574-12579 [PubMed]
04-5) Fukuda, M.,
Kanno, E. and Yamamoto, A. (2004) Rabphilin and Noc2
are recruited to dense-core vesicles through specific interaction with Rab27A
in PC12 cells. J.
Biol. Chem. 279,
13065-13075 [PubMed]
04-6) Imai, A.,
Yoshie, S., Nashida, T., Shimomura, H. and Fukuda, M. (2004) The small GTPase
Rab27B regulates amylase release from rat parotid acinar cells. J. Cell Sci.
117, 1945-1953 [PubMed]
04-7) Fukuda, M. and
Itoh, T. (2004) Slac2-a/melanophilin contains
multiple PEST-like sequences that are highly sensitive to proteolysis. J. Biol. Chem.
279, 22314-22321 [PubMed]
04-8) Fukuda, M.
(2004) RNA interference-mediated silencing of synaptotagmin
IX, but not synaptotagmin I, inhibits dense-core
vesicle exocytosis in PC12 cells. Biochem. J. 380, 875-879 [PubMed]
04-9) Iezzi, M.,
Kouri, G., Fukuda, M. and Wollheim, C. B. (2004) Synaptotagmin V and IX isoforms control Ca2+-dependent
insulin exocytosis. J. Cell Sci. 117, 3119-3127 [PubMed]
04-10) Zhang, Q., Fukuda,
M., Van Bockstaele, E., Pascual, O. and Haydon, P. G.
(2004) Synaptotagmin IV regulates glial glutamate
release. Proc.
Natl. Acad. Sci. USA 101,
9441-9446 [PubMed]
04-11) Fukuda, M.
(2004) Alternative splicing in the first alpha-helical region of the
Rab-binding domain of Rim regulates Rab3A binding activity: Is Rim a Rab3
effector protein during evolution? Genes Cells 9, 831-842 [PubMed]
04-12) Fukuda, M. and
Yamamoto, A. (2004) Effect of forskolin on synaptotagmin
IV protein trafficking in PC12 cells. J. Biochem. 136, 245-253 [PubMed]
04-13) Kuroda, T. S.
and Fukuda, M. (2004) Rab27A-binding protein Slp2-a is required for peripheral
melanosome distribution and elongated cell shape in melanocytes. Nature Cell Biol. 6, 1195-1203 [PubMed]
04-14) Fukuda, M., Kanno,
E., Satoh, M., Saegusa, C. and Yamamoto, A. (2004) Synaptotagmin VII is targeted to dense-core vesicles and
regulates their Ca2+-dependent exocytosis in PC12 cells. J. Biol. Chem.
279, 52677-52684 [PubMed]
04-15) Llinás,
R. R., Sugimori, M., Moran, K. A., Moreira, J. E. and Fukuda, M. (2004)
Vesicular reuptake inhibition by a synaptotagmin I
C2B domain antibody at the squid giant synapse. Proc. Natl. Acad. Sci. USA 101, 17855-17860 [PubMed]
i2003”Nj
03-1) Fukuda, M.,
Kanno, E., Ogata, Y., Saegusa, C., Kim, T., Peng Loh,
Y. and Yamamoto, A. (2003) Nerve growth factor-dependent sorting of synaptotagmin IV protein to mature dense-core vesicles that
undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem. 278, 3220-3226 [PubMed]
03-2) Bahadoran, P., Busca, R., Chiaverini,
C., Westbroek, W., Lambert, J., Bille, K., Valony, G.,
Fukuda, M., Naeyaert, J.-M., Ortonne, J.-P. and Ballotti, R. (2003) Characterization of the molecular
defects in Rab27a, caused by RAB27A
missense mutations found in patients with Griscelli syndrome. J. Biol. Chem.
278, 11386-11392 [PubMed]
03-3) Fukuda, M.
(2003) Distinct Rab binding specificity of Rim1, Rim2, rabphilin,
and Noc2: Identification of a critical determinant of Rab3A/Rab27A recognition
by Rim2. J.
Biol. Chem. 278,
15373-15380 [PubMed]
03-4) Fukuda, M.
(2003) Slp4-a/granuphilin-a inhibits dense-core vesicle exocytosis through
interaction with the GDP-bound form of Rab27A in PC12 cells. J. Biol. Chem.
278, 15390-15396 [PubMed]
03-5) Fukuda, M.
(2003) Molecular cloning, expression, and characterization of a novel class of synaptotagmin (Syt XIV) conserved
from Drosophila to humans. J. Biochem. 133,
641-649 [PubMed]
03-6) Fukuda, M.
(2003) Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV. Biochem. Biophys. Res.
Commun. 306, 64-71 [PubMed]
03-7)
Kuroda, T. S., Ariga, H. and Fukuda,
M. (2003) The actin-binding domain of Slac2-a/melanophilin
is required for melanosome distribution in melanocytes. Mol. Cell. Biol. 23, 5245-5255 [PubMed]
03-8) Sato, M., Moroi, K., Nishiyama, M., Zhou, J., Usui, H., Kasuya, Y.,
Fukuda, M., Kohara, Y., Komuro, I. and Kimura, S. (2003) Characterization of a
novel C. elegans RGS protein with a
C2 domain: Evidence for direct association between C2 domain and Gaq subunit. Life Sci. 73,
917-932 [PubMed]
03-9) Haberman, Y.,
Grimberg, E., Fukuda, M. and Sagi-Eisenberg, R. (2003) Synaptotagmin
IX, a possible linker between the perinuclear endocytic recycling compartment
and the microtubules. J. Cell Sci. 116, 4307-4318 [PubMed]
03-10) Waselle, L., Coppola, T., Fukuda, M., Iezzi, M.,
El-Amraoui, A., Petit, C. and Regazzi, R. (2003) Involvement of the Rab27
binding protein Slac2c/MyRIP in insulin exocytosis. Mol. Biol. Cell
14, 4103-4113 [PubMed]
03-11) Yoo, S.,
Nguyen, M. P., Fukuda, M., Bittner, G. D. and Fishman, H. M. (2003)
Plasmalemmal sealing of transected mammalian neurites is a gradual process
mediated by Ca2+-regulated proteins. J. Neurosci. Res.
74, 541-551 [PubMed]
i2002”Nj
02-1) Fukuda, M.,
Kowalchyk, J. A., Zhang, X., Martin, T. F. J. and Mikoshiba,
K. (2002) Synaptotagmin IX regulates Ca2+-dependent
secretion in PC12 cells. J. Biol. Chem. 277, 4601-4604 [PubMed]
02-2) Kuroda, T. S.,
Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) The Slp homology domain of synaptotagmin-like
proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J. Biol. Chem.
277, 9212-9218 [PubMed]
02-3) Fukuda, M.,
Kuroda, T. S. and Mikoshiba, K. (2002) Slac2-a/melanophilin, the missing link between Rab27 and myosin Va:
Implications of a tripartite protein complex for melanosome transport. J. Biol. Chem.
277, 12432-12436 [PubMed]
02-4) Zhang, X.,
Kim-Miller, M. J., Fukuda, M., Kowalchyk, J. A. and Martin, T. F. J. (2002) Ca2+-dependent
synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered
exocytosis. Neuron
34, 599-611 [PubMed]
02-5) Kuroda, T. S.,
Fukuda, M., Ariga, H. and Mikoshiba, K. (2002) Synaptotagmin-like protein 5: A novel Rab27A effector with
C-terminal tandem C2 domains. Biochem. Biophys. Res.
Commun. 293, 899-906 [PubMed]
02-6) Fukuda, M.,
Ogata, Y., Saegusa, C., Kanno, E. and Mikoshiba, K. (2002) Alternative splicing isoforms of synaptotagmin VII in the mouse, rat and human. Biochem. J. 365, 173-180 [PubMed]
02-7) Saegusa, C., Fukuda, M. and Mikoshiba,
K. (2002) Synaptotagmin V is targeted to dense-core vesicles
that undergo calcium-dependent exocytosis in PC12 cells. J. Biol. Chem. 277, 24499-24505 [PubMed]
02-8) Ibata, K., Hashikawa, T., Tsuboi,
T., Terakawa, S., Liang, F., Mizutani, A., Fukuda, M.
and Mikoshiba, K. (2002) Non-polarized distribution
of synaptotagmin IV in neurons: Evidence that synaptotagmin IV is not a synaptic vesicle protein. Neurosci. Res. 43, 401-406 [PubMed]
02-9) Fukuda, M.,
Katayama, E. and Mikoshiba, K. (2002) The calcium-binding
loops of the tandem C2 domains of synaptotagmin VII
cooperatively mediate calcium-dependent oligomerization. J. Biol. Chem. 277, 29315-29320 [PubMed]
02-10) Fukuda, M.
(2002) Vesicle-associated membrane protein-2/synaptobrevin
binding to synaptotagmin I promotes O-glycosylation of synaptotagmin
I. J. Biol.
Chem. 277, 30351-30358 [PubMed]
02-11) Fukuda, M.
(2002) The C2A domain of synaptotagmin-like protein 3
(Slp3) is an atypical calcium-dependent phospholipid-binding machine:
Comparison with the C2A domain of synaptotagmin I. Biochem. J. 366, 681-687 [PubMed]
02-12) Fukuda, M., Kanno,
E., Saegusa, C., Ogata, Y. and Kuroda, T. S. (2002) Slp4-a/granuphilin-a
regulates dense-core vesicle exocytosis in PC12 cells. J. Biol. Chem. 277, 39673-39678 [PubMed]
02-13) Fukuda, M.
(2002) Synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin
is a critical determinant of GTP-dependent specific binding to Rab27A. J. Biol. Chem.
277, 40118-40124 [PubMed]
02-14) Fukuda, M. and
Kuroda, T. S. (2002) Slac2-c (synaptotagmin-like
protein homologue lacking C2 domains-c), a novel linker
protein that interacts with Rab27, myosin Va/VIIa,
and actin. J.
Biol. Chem. 277,
43096-43103 [PubMed]
02-15) Peng W.,
Premkumar, A., Mossner, R., Fukuda, M., Lesch, K. P. and Simantov, R. (2002) Synaptotagmin I and IV are differentially regulated in the
brain by the recreational drug 3,4-methylenedioxymethamphetamine (MDMA). Mol. Brain Res.
108, 94-101 [PubMed]
i2001”Nj
01-1) Fukuda, M. and Mikoshiba, K. (2001) Characterization of KIAA1427 protein
as an atypical synaptotagmin (Syt
XIII). Biochem. J. 354, 249-257 [PubMed]
01-2) Fukuda, M. and Mikoshiba, K. (2001) Synaptotagmin-like
protein 1-3: A novel family of C-terminal-type tandem C2 proteins. Biochem. Biophys. Res. Commun.
281, 1226-1233 [PubMed]
01-3) Nalefski, E. A., Wisner, M. A., Chen, J. Z., Sprang, S. R.,
Fukuda, M., Mikoshiba, K. and Falke, J. J. (2001) C2
domains from different Ca2+ signaling pathways display functional
and mechanistic diversity. Biochemistry 40, 3089-3100 [PubMed]
01-4) Gut, A.,
Kiraly, C. E., Fukuda, M., Mikoshiba, K., Wollheim, C. B. and Lang, J. (2001) Expression and localisation of synaptotagmin
isoforms in endocrine beta-cells: Their function in insulin exocytosis. J. Cell Sci.
114, 1709-1716 [PubMed]
01-5) Fukuda, M., Ibata, K. and Mikoshiba, K.
(2001) A unique spacer domain of synaptotagmin IV is
essential for Golgi localization. J. Neurochem. 77, 730-740 [PubMed]
01-6) Fukuda, M., Saegusa, C. and Mikoshiba, K.
(2001) Novel splicing isoforms of synaptotagmin-like
proteins 2 and 3: Identification of the Slp homology
domain. Biochem. Biophys. Res.
Commun. 283, 513-519 [PubMed]
01-7) Fukuda, M., Saegusa, C., Kanno, E. and Mikoshiba,
K. (2001) The C2A domain of double C2 protein gamma contains a functional
nuclear localization signal. J. Biol. Chem. 276, 24441-24444 [PubMed]
01-8)
Fukuda, M. and Mikoshiba, K. (2001) Mechanism of the
calcium-dependent multimerization of synaptotagmin
VII mediated by its first and second C2 domains. J. Biol. Chem. 276, 27670-27676 [PubMed]
01-9) Michaut, M., De
Blas, G., Tomes, C. N., Yunes, R., Fukuda, M. and Mayorga, L. S. (2001) Synaptotagmin VI participates in the acrosome reaction of
human spermatozoa. Dev. Biol. 235,
521-529 [PubMed]
01-10) Fukuda, M. and
Mikoshiba, K. (2001) Tac2-N, an atypical C-type
tandem C2 protein localized in the nucleus. FEBS Lett. 503,
217-218 [PubMed]
01-11) Fukuda, M.,
Kanno, E., Ogata, Y. and Mikoshiba, K. (2001)
Mechanism of the SDS-resistant synaptotagmin
clustering mediated by the cysteine cluster at the interface between the
transmembrane and spacer domains. J. Biol. Chem. 276, 40319-40325 [PubMed]
01-12) Fukuda, M.,
Yamamoto, A. and Mikoshiba, K. (2001) Formation of
crystalloid endoplasmic reticulum induced by expression of synaptotagmin
lacking the conserved WHXL motif in the C terminus: Structural importance of
the WHXL motif in the C2B domain. J. Biol. Chem. 276, 41112-41119 [PubMed]
01-13) Minagawa, T.,
Fukuda, M. and Mikoshiba, K. (2001) Distinct
phosphoinositide binding specificity of the GAP1 family proteins:
Characterization of the pleckstrin homology domains
of mrasal and kiaa0538. Biochem. Biophys. Res. Commun. 288, 87-90 [PubMed]
01-14) Fukuda, M. and
Mikoshiba, K. (2001) The N-terminal cysteine cluster
is essential for membrane targeting of B/K protein. Biochem. J. 360, 441-448 [PubMed]
01-15) Kida, Y.,
Sakaguchi, M., Fukuda, M., Mikoshiba, K. and Mihara,
K. (2001) Amino acid residues before the hydrophobic region which are critical
for membrane translocation of the N-terminal domain of synaptotagmin
II. FEBS Lett.
507, 341-345 [PubMed]
i2000”Nj
00-1) Ibata, K., Fukuda, M., Hamada, T., Kabayama, H. and Mikoshiba, K. (2000) Synaptotagmin
IV is present at the Golgi and distal parts of neurites. J. Neurochem. 74,
518-526 [PubMed]
00-2) Mizutani, A.,
Fukuda, M., Ibata, K., Shiraishi, Y. and Mikoshiba, K. (2000) SYNCRIP, a cytoplasmic counterpart of
heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J. Biol. Chem. 275, 9823-9831 [PubMed]
00-3) Fukuda, M. and Mikoshiba K. (2000) Genomic structures of synaptotagmin II protein: Comparison of exon-intron organization
of the synaptotagmin gene family. Biochem. Biophys. Res. Commun. 270, 528-532 [PubMed]
00-4) Berton, F.,
Cornet, V., Iborra, C., Garrido, J., Dargent, B.,
Fukuda, M., Seagar, M. and Marquèze, B. (2000) Synaptotagmin I and IV define distinct populations of
neuronal transport vesicles. Eur. J. Neurosci. 12, 1294-1302 [PubMed]
00-5) Detrait, E., Eddleman, C. S., Yoo, S., Fukuda, M., Nguyen,
M. P., Bittner, G. D. and Fishman, H. M. (2000) Axolemmal repair requires
proteins that mediate synaptic vesicle fusion. J. Neurobiol. 44, 382-391 [PubMed]
00-6) Fukuda, M. and Mikoshiba, K. (2000) Distinct self-oligomerization
activities of synaptotagmin family: Unique
calcium-dependent oligomerization properties of synaptotagmin
VII. J. Biol.
Chem. 275, 28180-28185 [PubMed]
00-7) Kida, Y.,
Sakaguchi, M., Fukuda, M., Mikoshiba, K. and Mihara,
K. (2000) Membrane topogenesis of a type I
signal-anchor protein, mouse synaptotagmin II, on the
endoplasmic reticulum. J. Cell Biol. 150, 719-730 [PubMed]
00-8) Fukuda, M. and Mikoshiba, K. (2000) Calcium-dependent and -independent
hetero-oligomerization in the synaptotagmin family. J. Biochem. 128,
637-645 [PubMed]
00-9) Detrait, E. R., Yoo, S., Eddleman, C. S., Fukuda, M.,
Bittner, G. D. and Fishman, H. M. (2000) Plasmalemmal repair of severed
neurites of PC12 cells requires Ca2+ and synaptotagmin. J. Neurosci. Res. 62, 566-573 [PubMed]
00-10) Fukuda, M. and
Mikoshiba, K. (2000) Doc2gamma, a third isoform of double
C2 protein, lacking calcium-dependent phospholipid binding activity. Biochem. Biophys.
Res. Commun. 276, 626-632
[PubMed]
00-11) Fukuda, M.,
Kabayama, H. and Mikoshiba, K. (2000) Drosophila AD3 mutation of synaptotagmin impairs calcium-dependent
self-oligomerization activity. FEBS Lett. 482,
269-272 [PubMed]
00-12) Fukuda, M. and
Mikoshiba, K. (2000) Expression of synaptotagmin I or II promotes neurite outgrowth in PC12
cells. Neurosci. Lett. 295, 33-36 [PubMed]
00-13) Fukuda, M.,
Moreira, J. E., Liu, V., Sugimori, M., Mikoshiba, K.
and Llinás, R. R. (2000) Role of the conserved WHXL
motif in the C terminus of synaptotagmin in synaptic
vesicle docking. Proc.
Natl. Acad. Sci. USA 97,
14715-14719 [PubMed]
i1999”Nj
99-1) Kabayama, H.,
Takei, K., Fukuda, M., Ibata, K. and Mikoshiba, K. (1999) functional
involvement of synaptotagmin I/II C2A domain in
neurite outgrowth of chick dorsal root ganglion neuron. Neuroscience 88, 999-1003 [PubMed]
99-2) Fukuda, M.,
Kanno, E. and Mikoshiba, K. (1999) Conserved
N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X. J. Biol. Chem. 274, 31421-31427 [PubMed]
99-3) Fukuda, M. and Mikoshiba, K. (1999) A novel alternatively spliced variant
of synaptotagmin VI lacking a transmembrane domain:
Implications for distinct functions of the two isoforms. J. Biol. Chem. 274, 31428-31434 [PubMed]
i1998”Nj
98-1) Sugimori, M.,
Tong, C.-K., Fukuda, M., Moreira, J. E., Kojima, T., Mikoshiba,
K. and Llinás, R. (1998) Presynaptic injection of syntaxin-specific antibodies blocks transmission in the
squid giant synapse. Neuroscience 86, 39-51 [PubMed]
98-2) Ibata, K., Fukuda, M. and Mikoshiba,
K. (1998) Inositol 1,3,4,5-tetrakisphosphate binding activities of neuronal and
nonneuronal synaptotagmins: Identification of
conserved amino acid substitutions that abolish inositol
1,3,4,5-tetrakisphosphate binding to synaptotagmins
III, V, and X. J.
Biol. Chem. 273,
12267-12273 [PubMed]
i1997”Nj
97-1) Ohara-Imaizumi,
M., Fukuda, M., Niinobe, M., Misonou,
H., Ikeda, K., Murakami, T., Kawasaki, M., Mikoshiba,
K. and Kumakura, K. (1997) Distinct roles of C2A and C2B domains of synaptotagmin in the regulation of exocytosis in adrenal
chromaffin cells. Proc. Natl. Acad. Sci. USA 94, 287-291 [PubMed]
97-2) Mehrotra, B.,
Elliott, J. T., Chen, J., Olszewski, J. D., Profit, A. A., Chaudhary, A.,
Fukuda, M., Mikoshiba, K. and Prestwich, G. D. (1997)
Selective photoaffinity labeling of the inositol polyphosphate binding C2B
domains of synaptotagmins. J. Biol. Chem. 272, 4237-4244 [PubMed]
97-3) Fukuda, M.,
Kojima, T. and Mikoshiba, K. (1997) Regulation by
bivalent cations of phospholipid binding to the C2A domain of synaptotagmin III. Biochem. J. 323, 421-425 [PubMed]
97-4) Mochida, S.,
Fukuda, M., Niinobe, M., Kobayashi, H. and Mikoshiba, K. (1997) Roles of synaptotagmin
C2 domains in neurotransmitter secretion and inositol high-polyphosphate
binding at mammalian cholinergic synapses. Neuroscience 77, 937-943 [PubMed]
97-5) Kojima, T.,
Fukuda, M., Watanabe, Y., Hamazato, F. and Mikoshiba, K. (1997) Characterization of the pleckstrin homology domain of Btk
as an inositol polyphosphate and phosphoinositide binding domain. Biochem. Biophys. Res. Commun. 236, 333-339 [PubMed]
97-6) Lang, J.,
Fukuda, M., Zhang, H., Mikoshiba, K. and Wollheim, C. B. (1997) The first C2 domain of synaptotagmin is required for exocytosis of insulin from
pancreatic beta-cells: Action of synaptotagmin at low
micromolar calcium. EMBO J. 16,
5837-5846 [PubMed]
97-7) Taketo, M.,
Yokoyama, S., Fukuda, M., Mikoshiba, K. and
Higashida, H. (1997) Inosiotl-1,3,4,5-tetrakisphosphate binding sites in
control and ras-transformed NIH/3T3 fibroblasts. Biochem. Biophys. Res. Commun. 239, 349-352 [PubMed]
97-8) Mizutani, A.,
Fukuda, M., Niinobe, M. and Mikoshiba,
K. (1997) Regulation of AP-2-synaptotagmin interaction by inositol high
polyphosphates. Biochem. Biophys. Res.
Commun. 240, 128-131 [PubMed]
i1996”Nj
96-1) Fukuda, M.,
Kojima, T. and Mikoshiba, K. (1996) Phospholipid
composition dependence of Ca2+-dependent
phospholipid binding to the C2A domain of synaptotagmin
IV. J. Biol.
Chem. 271, 8430-8434 [PubMed]
96-2) Fukuda, M. and Mikoshiba, K. (1996) Structure-function relationships of
the mouse Gap1m: Determination of the inositol
1,3,4,5-tetrakisphosphate-binding domain. J. Biol. Chem. 271, 18838-18842 [PubMed]
96-3) Kojima, T.,
Fukuda, M., Aruga, J. and Mikoshiba,
K. (1996) Calcium-dependent phospholipid binding to the C2A domain of a
ubiquitous form of double C2 protein (Doc2beta). J. Biochem.
120, 671-676 [PubMed]
96-4) Fukuda, M.,
Kojima, T., Kabayama, H. and Mikoshiba, K. (1996)
Mutation of the pleckstrin homology domain of
Bruton's tyrosine kinase in immunodeficiency impaired inositol
1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303-30306 [PubMed]
i1995”Nj
95-1) Fukuda, M.,
Kojima, T., Aruga, J., Niinobe,
M. and Mikoshiba, K. (1995) Functional diversity of
C2 domains of synaptotagmin family: Mutational
analysis of inositol high polyphosphate binding domain. J. Biol. Chem. 270, 26523-26527 [PubMed]
95-2) Mikoshiba, K., Fukuda, M., Moreira, J. E., Lewis, F. M. T.,
Sugimori, M., Niinobe, M. and Llinás,
R. (1995) Role of the C2A domain of synaptotagmin in
transmitter release as determined by specific antibody injection into the squid
giant synapse preterminal. Proc. Natl. Acad. Sci. USA 92, 10703-10707 [PubMed]
95-3) Fukuda, M.,
Moreira, J. E., Lewis, F. M. T., Sugimori, M., Niinobe,
M., Mikoshiba, K. and Llinás,
R. (1995) Role of the C2B domain of synaptotagmin in
vesicular release and recycling as determined by specific antibody injection
into the squid giant synapse preterminal. Proc. Natl. Acad. Sci. USA 92, 10708-10712 [PubMed]
i1994”Nj
94-1) Akiyama, K.,
Fukuda, M., Kobayashi, N., Matsuoka, A. and Shikama,
K. (1994) The pH-depededent swinging-out of the
distal histidine residue in ferric hemoglobin of a midge larva (Tokunagayusurika akamusi). Biochim. Biophys. Acta 1208, 306-309 [PubMed]
94-2) Fukuda, M., Aruga, J., Niinobe, M., Aimoto,
S. and Mikoshiba, K. (1994)
Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin II. J. Biol. Chem. 269, 29206-29211 [PubMed]
94-3) Niinobe, M., Yamaguchi, Y., Fukuda, M. and Mikoshiba, K. (1994) Synaptotagmin
is an inositol polyphosphate binding protein: Isolation and characterizaion
as an Ins 1,3,4,5-P4 binding
protein. Biochem. Biophys. Res.
Commun. 205, 1036-1042 [PubMed]
94-4) Llinás,
R., Sugimori, M., Lang, E. J., Morita, M., Fukuda, M., Niinobe,
M. and Mikoshiba, K. (1994) The inositol
high-polyphosphate series blocks synaptic transmission by preventing vesicular
fusion: A squid giant synapse study. Proc. Natl. Acad. Sci. USA 91, 12990-12993 [PubMed]
94-5) Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda,
M. and Mikoshiba, K. (1994) A novel zinc finger
protein, zic, is involved in neurogenesis, especially
in the cell lineage of cerebellar granule cells. J. Neurochem.
63, 1880-1890 [PubMed]
i1993”Nj
93-1) Fukuda, M.,
Takagi, T. and Shikama, K. (1993) Polymorphic
hemoglobin from a midge larva (Tokunagayusurika akamusi) can be divided into two different types. Biochim. Biophys. Acta 1157, 185-191 [PubMed]